
A diy �Seven� tutorial

Version 7.02

November 25, 2015

diy7 is a tool suite for testing shared memory models. We provide several tools, litmus7 (Part I) for

running tests, diy7 generators (Part II) for produing tests from onise spei�ations, and herd7 (Part III)

for simulating memory models. In Part IV we desribe a few onrete experiments, illustrating frequent

usage patterns of diy7 generators and of litmus7.

The software is written in Objetive Caml

1

, and released as soures. The web site of diy7 is http:

//diy.inria.fr/, authors an be ontated at diy-devel�inria.fr. This software is released under the

terms of the CeCILL-B Free Software Liense Agreement.

The authors of the diy7 tool suite are Jade Alglave and Lu Maranget, with ontributions by Jaques-

Pasal Deplaix (litmus7 for C) and Keryan Didier (herd7 semantis for ARMv8 and simple ARMv8 models).

Past ontributors are Susmit Sarkar (litmus7), Tyler Sorensen (herd7), John Wikerson (herd7). The tool

litmus7 is inspired from an unreleased prototype by Thomas Braibant and Franeso Zappa Nardelli.

Contents

I Running tests with litmus7 4

1 A tour of litmus7 4

1.1 A simple run . 4

1.2 Cross ompilation . 5

1.3 Running several tests at one . 6

2 Controlling test parameters 7

2.1 Arhiteture of tests . 7

2.2 A�nity . 9

2.2.1 Introdution to a�nity . 9

2.2.2 Study of a�nity . 12

2.2.3 Advaned ontrol . 13

2.2.4 Custom ontrol . 15

2.3 Controlling exeutable �les . 17

3 Advaned ontrol of test parameters 18

3.1 Timebase synhronisation mode . 18

3.2 Advaned prefeth ontrol . 21

3.2.1 Custom prefeth . 21

3.2.2 Prefeth metadata . 22

3.2.3 �Stati� prefeth ontrol . 24

4 Usage of litmus7 25

1

http://aml.inria.fr/oaml/

1

II Generating tests 30

5 Preamble 30

5.1 Relaxation of Sequential Consisteny . 30

5.2 Introdution to andidate relaxations . 31

5.3 More andidate relaxations . 32

5.4 Summary of simple andidate relaxations . 35

5.4.1 Communiation andidate relaxations . 35

5.4.2 Program order andidate relaxations . 35

5.4.3 Fene andidate relaxations . 36

6 Testing andidate relaxations with diy7 36

6.1 Priniple . 36

6.2 Testing x86 . 37

7 Additional relaxations 38

7.1 Intra-proessor dependenies . 38

7.2 Composite relaxations and umulativity . 40

7.3 Detour andidate relaxations . 41

8 Test variations with diyross7 42

9 Identifying oherene orders with observers 42

9.1 Simple observers . 43

9.2 More observers . 43

9.2.1 Fenes and loops in observers . 43

9.2.2 Loal observers . 44

9.2.3 Performane of observers . 46

9.3 Three stores or more . 46

10 Command usage 47

10.1 A note on test names . 47

10.1.1 Family names . 47

10.1.2 Desriptive names for variants . 48

10.2 Common options . 49

10.3 Usage of diyone7 . 50

10.4 Usage of diyross7 . 51

10.5 Usage of diy7 . 51

10.6 Usage of readRelax7 . 53

11 Additional tools: extrating yles and lassi�ation 53

11.1 Usage of myle7 . 55

11.2 Usage of lassify7 . 55

III Simulating memory models with herd7 56

12 Writing simple models 56

12.1 Sequential onsisteny . 56

12.2 Total Store Order (TSO) . 58

12.3 Sequential onsisteny, total order de�nition . 66

12.4 Computing oherene orders . 70

2

13 Produing pitures of exeutions 72

13.1 Graph modes . 74

13.2 Showing forbidden exeutions . 75

14 Model de�nitions 78

14.1 Overview . 78

14.2 Identi�ers . 79

14.3 Expressions . 81

14.4 Instrutions . 84

14.5 Models . 87

14.6 Primitives . 87

14.7 Library . 88

15 Usage of herd7 89

15.1 Arguments . 89

15.2 Options . 89

15.3 Con�guration �les . 93

15.4 File searhing . 96

IV Some examples 97

16 Running several tests at one, hanging ritial parameters 97

17 Cross ompiling, a�nity experiment 100

18 Cross running, testing low-end devies 102

3

Part I

Running tests with litmus7

Traditionally, a litmus test is a small parallel program designed to exerise the memory model of a parallel,

shared-memory, omputer. Given a litmus test in assembler (X86, Power or ARM) litmus7 runs the test.

Using litmus7 thus requires a parallel mahine, whih must additionally feature g and the pthreads

library. Our tool litmus7 has some limitations espeially as regards reognised instrutions. Nevertheless,

litmus7 should aept all tests produed by the ompanion test generators (see Part II) and has been su-

essfully used on Linux, MaOS, AIX and Android.

1 A tour of litmus7

1.1 A simple run

Consider the following (rather lassial, store bu�ering) SB.litmus litmus test for X86:

X86 SB

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [x℄,$1 | MOV [y℄,$1 ;

MOV EAX,[y℄ | MOV EAX,[x℄ ;

loations [x;y;℄

exists (0:EAX=0 /\ 1:EAX=0)

A litmus test soure has three main setions:

1. The initial state de�nes the initial values of registers and memory loations. Initialisation to zero may

be omitted.

2. The ode setion de�nes the ode to be run onurrently � above there are two threads. Yes we know,

our X86 assembler syntax is a mistake.

3. The �nal ondition applies to the �nal values of registers and memory loations.

Run the test by:

% litmus7 SB.litmus

%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for SB.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%

X86 SB

"Fre PodWR Fre PodWR"

{x=0; y=0;}

P0 | P1 ;

MOV [x℄,$1 | MOV [y℄,$1 ;

MOV EAX,[y℄ | MOV EAX,[x℄ ;

exists (0:EAX=0 /\ 1:EAX=0)

Generated assembler

#START _litmus_P1

4

movl $1,(%r10)

movl (%r9),%eax

#START _litmus_P0

movl $1,(%r9)

movl (%r10),%eax

Test SB Allowed

Histogram (4 states)

40 *>0:EAX=0; 1:EAX=0;

499923:>0:EAX=1; 1:EAX=0;

500009:>0:EAX=0; 1:EAX=1;

28 :>0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 40, Negative: 999960

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=7dbd6b8e6dd4ab2ef3d48b0376fb2e3

Observation SB Sometimes 40 999960

Time SB 0.44

...

The litmus test is �rst reminded, followed by atual assembler � the mahine is a 64 bits one, in-line address

referenes disappeared, registers may hange, and assembler syntax is now more familiar. The test has run

one million times, produing one million �nal states, or outomes for the registers EAX of threads P0 and P1.

The test run validates the ondition, with 40 positive witnesses.

1.2 Cross ompilation

With option -o <name.tar>, litmus7 does not run the test. Instead, it produes a tar arhive that ontains

the C soures for the test.

Consider SB-PPC.litmus, a Power version of the previous test:

PPC SB-PPC

"Fre PodWR Fre PodWR"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r4) | lwz r3,0(r4) ;

exists (0:r3=0 /\ 1:r3=0)

Our target mahine (pp) runs MaOS, whih we speify with the -os option:

% litmus7 -o /tmp/a.tar -os ma SB-PPC.litmus

% sp /tmp/a.tar pp:/tmp

Then, on the remote mahine pp:

pp% mkdir SB && d SB

pp% tar xf /tmp/a.tar

5

pp% ls

omp.sh Makefile outs. outs.h README.txt run.sh SB-PPC. show.awk utils. utils.h

Test is ompiled by the shell sript omp.sh (or by (Gnu) make, at user's hoie) and run by the shell sript

run.sh:

pp% sh omp.sh

pp% sh run.sh

...

Test SB-PPC Allowed

Histogram (3 states)

1784 *>0:r3=0; 1:r3=0;

498564:>0:r3=1; 1:r3=0;

499652:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 1784, Negative: 998216

Condition exists (0:r3=0 /\ 1:r3=0) is validated

Hash=4edef6ab507611612efae14a9b

Observation SB-PPC Sometimes 1784 998216

Time SB-PPC 0.55

...

As we see, the ondition validates also on Power. Notie that ompilation produes an exeutable �le,

SB-PPC.exe, whih an be run diretly, for a less verbose output.

1.3 Running several tests at one

Consider the additional test STFW-PPC.litmus:

PPC STFW-PPC

"Rfi PodRR Fre Rfi PodRR Fre"

{

0:r2=x; 0:r5=y;

1:r2=y; 1:r5=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) ;

lwz r4,0(r5) | lwz r4,0(r5) ;

exists

(0:r3=1 /\ 0:r4=0 /\ 1:r3=1 /\ 1:r4=0)

To ompile the two tests together, we an give two �le names as arguments to litmus:

$ litmus7 -o /tmp/a.tar -os ma SB-PPC.litmus STFW-PPC.litmus

Or, more onveniently, list the litmus soures in a �le whose name starts with �:

$ at �pp

SB-PPC.litmus

STFW-PPC.litmus

$ litmus7 -o /tmp/a.tar -os ma �pp

6

To run the test on the remote pp mahine, the same sequene of ommands as in the one test ase applies:

pp% tar xf /tmp/a.tar && make && sh run.sh

...

Test SB-PPC Allowed

Histogram (3 states)

1765 *>0:r3=0; 1:r3=0;

498741:>0:r3=1; 1:r3=0;

499494:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 1765, Negative: 998235

Condition exists (0:r3=0 /\ 1:r3=0) is validated

Hash=4edef6ab507611612efae14a9b

Observation SB-PPC Sometimes 1765 998235

Time SB-PPC 0.57

...

Test STFW-PPC Allowed

Histogram (4 states)

480 *>0:r3=1; 0:r4=0; 1:r3=1; 1:r4=0;

499560:>0:r3=1; 0:r4=1; 1:r3=1; 1:r4=0;

499827:>0:r3=1; 0:r4=0; 1:r3=1; 1:r4=1;

133 :>0:r3=1; 0:r4=1; 1:r3=1; 1:r4=1;

Ok

Witnesses

Positive: 480, Negative: 999520

Condition exists (0:r3=1 /\ 0:r4=0 /\ 1:r3=1 /\ 1:r4=0) is validated

Hash=92b23f6332309325000656d0632131e

Observation STFW-PPC Sometimes 480 999520

Time STFW-PPC 0.56

...

Now, the output of run.sh shows the result of two tests.

2 Controlling test parameters

Users an ontrol some of testing onditions. Those impat e�ieny and outome variability.

Sometimes one looks for a partiular outome� for instane, one may seek to get the outome 0:r3=1; 1:r3=1;

that is missing in the previous experiment for test SB-PPC. To that aim, varying test onditions may help.

2.1 Arhiteture of tests

Consider a test a.litmus designed to run on t threads P0,. . . , Pt−1. The struture of the exeutable a.exe

that performs the experiment is as follows:

• So as to bene�t from parallelism, we run n = max(1, a/t) (integer division) tests onurrently on a

mahine where a logial proessors are available.

• Eah of these (idential) tests onsists in repeating r times the following sequene:

7

� Fork t (POSIX) threads T0, . . . Tt−1 for exeuting P0,. . . , Pt−1. Whih thread exeutes whih

ode is either �xed, or hanging, ontrolled by the launh mode. In our experiene, the launh

mode has marginal impat.

In ahe mode the Tk threads are re-used. As a onsequene, t threads only are forked.

� Eah thread Tk exeutes a loop of size s. Loop iteration number i exeutes the ode of Pk (in

�xed mode) and saves the �nal ontents of its observed registers in some arrays indexed by i.
Furthermore, still for iteration i, memory loation x is in fat an array ell.

How this array ell is aessed depends upon the memory mode. In diret mode the array ell is

aessed diretly as x[i]; as a result, ells are aessed sequentially and false sharing e�ets are

likely. In indiret mode the array ell is aessed by the means of a shu�ed array of pointers; as

a result we observed a muh greater variability of outomes. Additionally, the inrement of the

main loop (of size s) an be set to a value or stride di�erent from the default of one. Running a

test several times with hanging the stride value also proved quite e�etive in favouring outome

variability.

If the random preload mode is enabled, a preliminary loop of size s reads a random subset of the

memory loations aessed by Pk. Preload have a notieable e�et and teh random preload mode

is enabled by default. Starting from version 5.0, we provide a more preise ontrol over preloading

memory loations � See Se. 3.2.

The iterations performed by the di�erent threads Tk may be unsynhronised, exatly synhronised

by a pthread based barrier, or approximately synhronised by spei� ode. Absene of synhro-

nisation may be interesting when t exeeds a. As a matter of fat, in this situation, any kind

of synhronisation leads to prohibitive running times. However, for a large value of parameter s
and small t we have observed spontaneous onurrent exeution of some iterations amongst many.
Pthread based barriers are exat but they are slow and in fat o�ers poor synhronisation for

short ode sequenes. The approximate synhronisation is thus the preferred tehnique.

Starting from version 5.0, we provide a slightly altered user synhronisation mode: userfene,

whih alters user mode by exeuting memory fenes to speedup write propagation. The new

mode features overall better synhronisation, yielding dramati improvements on some examples.

However, outome variability may su�er from this more aurate synhronisation, hene user

mode remains the default.

More importantly, we provide an additional exat, timebase synhronisation tehnique: test

threads will �rst synhronise using polling synhronisation barrier ode, agree on a target time-

base

2

value and then loop reading the timebase until it exeeds the target value. This tehnique

yields very good synhronisation and allows �ne synhronisation tuning by assigning di�erent

starting delays to di�erent threads � see Se. 3.1. As ARM does not provide timebase ounters,

notie that �timebase� synhronisation for ARM silently degrades to synhronisation by the means

of the polling synhronisation barrier.

� Wait for the t threads to terminate and ollet outomes in some histogram like struture.

• Wait for the n tests to terminate and sum their histograms.

Hene, running a.exe produes n × r × s outomes. Parameters n, a, r and s an �rst be set di-

retly while invoking a.exe, using the appropriate ommand line options. For instane, assuming t = 2,
./a.exe -a 201 -r 10k -s 1 and ./a.exe -n 1 -r 1 -s 1M will both produe one million outomes,

but the latter is probably more e�ient. If our mahine has 8 ores, ./a.exe -a 8 -r 1 -s 1M will yield

4 millions outomes, in a time that we hope not to exeed too muh the one experiened with ./a.exe -n 1.

Also observe that the memory alloated is roughly proportional to n × s, while the number of Tk threads

reated will be t × n × r (t × n in ahe mode). The run.sh shell sript transmits its ommand line to all

the exeutable (.exe) �les it invokes, thereby providing a onvenient means to ontrol testing ondition for

2

Power and x86-based systems provide a user aessible timebase ounter that should provide onsistent times to all ores

and proessors.

8

several tests. Satisfatory test parameters are found by experimenting and the ontrol of exeutable �les by

ommand line options is designed for that purpose.

One satisfatory parameters are found, it is a nuisane to repeat them for every experiment. Thus,

parameters a, r and s an also be set while invoking litmus, with the same ommand line options. In fat

those settings ommand he default values of .exe �les ontrols. Additionally, the synhronisation tehnique

for iterations, the memory mode, and several others ompile time parameters an be seleted by appropriate

litmus7 ommand line options. Finally, users an reord frequently used parameters in on�guration �les.

2.2 A�nity

We view a�nity as a sheduler property that binds a (software, POSIX) thread to a given (hardware)

logial proessor. In the most simple situation a logial proessor is a ore. However in the presene of

hyper-threading (x86) or simultaneous multi threading (SMT, Power) a given ore an host several logial

proessors.

2.2.1 Introdution to a�nity

In our experiene, binding the threads of test programs to seleted logial proessors yields signi�ant

speedups and, more importantly, greater outome variety. We illustrate the issue by the means of an

example.

We onsider the test pp-iriw-lwsyn.litmus:

PPC pp-iriw-lwsyn

{

0:r2=x; 1:r2=x; 1:r4=y;

2:r4=y; 3:r2=x; 3:r4=y;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r4) ;

stw r1,0(r2) | lwsyn | stw r1,0(r4) | lwsyn ;

| lwz r3,0(r4) | | lwz r3,0(r2) ;

exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0)

The test onsists of four threads. There are two writers (P0 and P2) that write the value one into two di�erent

loations (x and y), and two readers that read the ontents of x and y in di�erent orders � P1 reads x �rst,

while P3 reads y �rst. The load instrutions lwz in reader threads are separated by a lightweight barrier

instrution lwsyn. The �nal ondition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) haraterises

the situation where the reader threads see the writes by P0 and P2 in opposite order. The orresponding

outome 1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0; is the only non-sequential onsistent (non-SC, see Part II)

possible outome. By any reasonable memory model for Power, one expets the ondition to validate, i.e.

the non-SC outome to show up.

The tested mahine vargas is a Power 6 featuring 32 ores (i.e. 64 logial proessors, sine SMT is

enabled) and running AIX in 64 bits mode. So as not to disturb other users, we run only one instane of the

test, thus speifying four available proessors. The litmus7 tool is absent on vargas. All these onditions

ommand the following invoation of litmus7, performed on our loal mahine:

$ litmus7 -r 1000 -s 1000 -a 4 -os aix -ws w64 pp-iriw-lwsyn.litmus -o pp.tar

$ sp pp.tar vargas:/var/tmp

On vargas we unpak the arhive and ompile the test:

vargas% tar xf /var/tmp/pp.tar && sh omp.sh

Then we run the test:

9

vargas% ./pp-iriw-lwsyn.exe

Test pp-iriw-lwsyn Allowed

Histogram (15 states)

163674:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

34045 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

40283 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

95079 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

33848 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

72201 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

32452 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

43031 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

73052 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

1 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

42482 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

90470 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

30306 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

43239 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

205837:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp-iriw-lwsyn Never 0 1000000

Time pp-iriw-lwsyn 1.32

The non-SC outome does not show up.

Altering parameters may yield this outome. In partiular, we may try using all the available logial

proessors with option -a 64. A�nity ontrol o�ers an alternative, whih is enabled at ompilation time

with litmus7 option -affinity:

$ litmus7 ... -affinity inr1 pp-iriw-lwsyn.litmus -o pp.tar

$ sp pp.tar vargas:/var/tmp

Option -affinity takes one argument (inr1 above) that spei�es the inrement used while alloating

logial proessors to test threads. Here, the (POSIX) threads reated by the test (named T0, T1, T2 and T3

in Se. 2.1) will get bound to logial proessors 0, 1, 2, and 3, respetively.
Namely, by default, the logial proessors are ordered as the sequene 0, 1, . . . , A − 1 � where A is

the number of available logial proessors, whih is inferred by the test exeutable

3

. Furthermore, logial

proessors are alloated to threads by applying the a�nity inrement while sanning the logial proessor

sequene. Observe that sine the launh mode is hanging (the default) threads Tk orrespond to di�erent

test threads Pi at eah run. The unpak ompile and run sequene on vargas now yields the non-SC outome,

better outome variety and a lower running time:

vargas% tar xf /var/tmp/pp.tar && make

vargas% ./pp-iriw-lwsyn.exe

Test pp-iriw-lwsyn Allowed

Histogram (16 states)

180600:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

3

Parameter A is not to be onfused with a of setion 2.1. The former serves to ompute logial threads while the latter

governs the number of tests that run simultaneously. However parameters a will be set to A when a�nity ontrol is enabled

and when a value is 0.

10

3656 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

18812 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

77692 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

2973 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

9 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

28881 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

75126 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

20939 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

30498 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

1234 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

89993 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

75769 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

76361 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

87864 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

229593:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

Ok

Witnesses

Positive: 9, Negative: 999991

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp-iriw-lwsyn Sometimes 9 999991

Time pp-iriw-lwsyn 0.68

One may hange the a�nity inrement with the ommand line option -i of exeutable �les. For instane,

one binds the test threads to logial proessors 0, 2, 4 and 6 as follows:

vargas% ./pp-iriw-lwsyn.exe -i 2

Test pp-iriw-lwsyn Allowed

Histogram (15 states)

160629:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

33389 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

43725 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

93114 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

33556 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

64875 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

34908 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

43770 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

64544 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

4 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

54633 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

92617 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

34754 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

54027 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

191455:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp-iriw-lwsyn Never 0 1000000

Time pp-iriw-lwsyn 0.92

11

One observes that the non-SC outome does not show up with the new a�nity setting.

One may also bind test thread to logial proessors randomly with exeutable option +ra.

vargas% ./pp-iriw-lwsyn.exe +ra

Test pp-iriw-lwsyn Allowed

Histogram (15 states)

...

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp-iriw-lwsyn Never 0 1000000

Time pp-iriw-lwsyn 1.85

As we see, the ondition does not validate either with random a�nity. As a matter of fat, logial

proessors are taken at random in the sequene 0, 1, . . . , 63; while the suessful run with -i 1 took them

in the sequene 0, 1, 2, 3. One an limit the sequene of logial proessor with option -p, whih takes a

sequene of logial proessors numbers as argument:

vargas% ./pp-iriw-lwsyn.exe +ra -p 0,1,2,3

Test pp-iriw-lwsyn Allowed

Histogram (16 states)

...

8 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

...

Ok

Witnesses

Positive: 8, Negative: 999992

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp-iriw-lwsyn Sometimes 8 999992

Time pp-iriw-lwsyn 0.70

The ondition now validates.

2.2.2 Study of a�nity

As illustrated by the previous example, both the running time and the outomes of a test are sensitive to

a�nity settings. We measured running time for inreasing values of the a�nity inrement from 0 (whih

disables a�nity ontrol) to 20, produing the following �gure:

12

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 5 10 15 20

tim
e

(s
ec

.)

increment

As regards outome variety, we get all of the 16 possible outomes only for an a�nity inrement of 1.
The di�erenes in running times an be explained by referene to the mapping of logial proessors

to hardware. The mahine vargas onsists in four MCM's (Multi-Chip-Module), eah MCM onsists in

four �hips�, eah hip onsists in two ores, and eah ore may support two logial proessors. As far as we

know, by querying vargaswith the AIX ommands lsattr, bindproessor and llstat, the MCM's hold the

logial proessors 0�15, 16�31, 32�47 and 48�63, eah hip holds the logial proessors 4k, 4k+1, 4k+2, 4k+3
and eah ore holds the logial proessors 2k, 2k + 1.

The measure of running times for varying inrements reveals two notieable slowdowns: from an inrement

of 1 to an inrement of 2 and from 5 to 6. The gap between 1 and 2 reveals the bene�ts of SMT for our

testing appliation. An inrement of 1 yields both the greatest outome variety and the minimal running

time. The other gap may perhaps be explained by referene to MCM's: for a value of 5 the tests runs on the
logial proessors 0, 5, 10, 15, all belonging to the same MCM; while the next a�nity inrement of 6 results

in running the test on two di�erent MCM (0, 6, 12 on the one hand and 18 on the other).

As a onlusion, a�nity ontrol provides users with a ertain level of ontrol over thread plaement,

whih is likely to yield faster tests when threads are onstrained to run on logial proessors that are �lose�

one to another. The best results are obtained when SMT is e�etively enfored. However, a�nity ontrol

is no panaea, and the memory system may be stressed by other means, suh as, for instane, alloating

important hunks of memory (option -s).

2.2.3 Advaned ontrol

For spei� experiments, the tehnique of alloating logial proessors sequentially by following a �xed

inrement may be two rigid. litmus7 o�ers a �ner ontrol on a�nity by allowing users to supply the logial

proessors sequene. Notie that most users will probably not need this advaned feature.

Anyhow, so as to on�rm that testing pp-iriw-lwsyn bene�ts from not rossing hip boundaries, one

may wish to on�ne its four threads to logial proessors 16 to 19, that is to the �rst hip of the seond

MCM. This an be done by overriding the default logial proessors sequene by an user supplied one given

as an argument to ommand-line option -p:

vargas% ./pp-iriw-lwsyn.exe -p 16,17,18,19 -i 1

Test pp-iriw-lwsyn Allowed

Histogram (16 states)

13

169420:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

1287 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

17344 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

85329 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

1548 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

3 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

27014 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

75160 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

19828 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

29521 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

441 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

93878 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

81081 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

76701 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

93623 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

227822:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

Ok

Witnesses

Positive: 3, Negative: 999997

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp-iriw-lwsyn Sometimes 3 999997

Time pp-iriw-lwsyn 0.63

Thus we get results similar to the previous experiment on logial proessors 0 to 3 (option -i 1 alone).

We may also run four simultaneous instanes (-n 4, parameter n of setion 2.1) of the test on the four

available MCM's:

vargas% ./pp-iriw-lwsyn.exe -p 0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51 -n 4 -i 1

Test pp-iriw-lwsyn Allowed

Histogram (16 states)

...

57 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

...

Ok

Witnesses

Positive: 57, Negative: 3999943

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp-iriw-lwsyn Sometimes 57 3999943

Time pp-iriw-lwsyn 0.75

Observe that, for a negligible penalty in running time, the number of non-SC outomes inreases signi�antly.

By ontrast, binding threads of a given instane of the test to di�erent MCM's results in poor running

time and no non-SC outome.

vargas% ./pp-iriw-lwsyn.exe -p 0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51 -n 4 -i 4

Test pp-iriw-lwsyn Allowed

Histogram (15 states)

...

Witnesses

14

Positive: 0, Negative: 4000000

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is NOT validated

Time pp-iriw-lwsyn 1.48

In the experiment above, the inrement is 4, hene the logial proessors alloated to the �rst instane of

the test are 0, 16, 32, 48, of whih indies in the logial proessors sequene are 0, 4, 8, 12, respetively. The
next alloated index in the sequene is 12 + 4 = 16. However, the sequene has 16 items. Wrapping around

yields index 0 whih happens to be the same as the starting index. Then, so as to alloate fresh proessors,

the starting index is inremented by one, resulting in alloating proessors 1, 17, 33, 49 (indies 1, 5, 9, 13)
to the seond instane � see setion 2.3 for the full story. Similarly, the third and fourth instanes will

get proessors 2, 18, 34, 50 and 3, 19, 35, 51, respetively. Attentive readers may have notied that the same

experiment an be performed with option -i 16 and no -p option.

Finally, users should probably be aware that at least some versions of Linux for x86 feature a less obvious

mapping of logial proessors to hardware. On a bi-proessor, dual-ore, 2-ways hyper-threading, Linux,

AMD64 mahine, we have heked that logial proessors residing on the same ore are k and k + 4, where
k is an arbitrary ore number ranging from 0 to 3. As a result, a proper hoie for favouring e�etive hyper-
threading on suh a mahine is -i 4 (or -p 0,4,1,5,2,6,3,7 -i 1). More worthwhile notiing, perhaps,

the straightforward hoie -i 1 disfavours e�etive hyper-threading. . .

2.2.4 Custom ontrol

Most tests run by litmus7 are produed by the litmus test generators desribed in Part II. Those tests

inlude meta-information that may diret a�nity ontrol. For instane we generate one test with the diyone7

tool, see Se. 5.2. More spei�ally we generate IRIW+lwsyns for Power (pp-iriw-lwsyn in the previous

setion) as follows:

% diyone7 -arh PPC -name IRIW+lwsyns Rfe LwSyndRR Fre Rfe LwSyndRR Fre

We get the new soure �le IRIW+lwsyns.litmus:

PPC IRIW+lwsyns

"Rfe LwSyndRR Fre Rfe LwSyndRR Fre"

Prefeth=0:x=T,1:x=F,1:y=T,2:y=T,3:y=F,3:x=T

Com=Rf Fr Rf Fr

Orig=Rfe LwSyndRR Fre Rfe LwSyndRR Fre

{

0:r2=x;

1:r2=x; 1:r4=y;

2:r2=y;

3:r2=y; 3:r4=x;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) ;

stw r1,0(r2) | lwsyn | stw r1,0(r2) | lwsyn ;

| lwz r3,0(r4) | | lwz r3,0(r4) ;

exists

(1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0)

The relevant meta-information is the �Com� line that desribes how test threads are related � for instane,

thread 0 stores a value to memory that is read by thread 1, written �Rf� (see Part II for more details).

Custom a�nity ontrol will tend to run threads related by �Rf� on �lose� logial proessors, where we

an for instane onsider that lose logial proessors belong to the same physial ore (SMT for Power).

This minimal logial proessor topology is desribed by two litmus7 ommand-line option: -smt <n> that

spei�es n-way SMT; and -smt_mode (seq|end) that spei�es how logial proessors from the same ore

are numbered. For a 8-ores 4-ways SMT power7 mahine we invoke litmus7 as follows:

15

% litmus7 -mem diret -smt 4 -smt_mode seq -affinity ustom -o a.tar IRIW+lwsyns.litmus

Notie that memory mode is diret and that the number of available logial proessors is unspei�ed, resulting

in running one instane of the test. More importantly, notie that a�nity ontrol is enabled -affinity

ustom, additionally speifying ustom a�nity mode.

We then upload the arhive a.tar to our Power7 mahine, unpak, ompile and run the test:

power7% tar xmf a.tar

power7% make

...

power7% ./IRIW+lwsyns.exe -v

./IRIW+lwsyns.exe -v

IRIW+lwsyns: n=1, r=1000, s=1000, +rm, +a, p='0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31'

thread alloation:

[23,22,3,2℄ {5,5,0,0}

Option -v instruts the exeutable to show settings of the test harness: we see that one instane of the

test is run (n=1), size parameters are reminded (r=1000, s=1000) and shu�ing of indiret memory mode is

performed (+rm). A�nity settings are also given: mode is ustom (+a) and the logial proessor sequene

inferred is given (-p 0,1,...,31). Additionally, the alloation of test threads to logial proessors is given,

as [...℄, as well as the alloation of test threads to physial ores, as {...}.

Here is the run output proper:

Test IRIW+lwsyns Allowed

Histogram (15 states)

2700 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

142 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

37110 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

181257:>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

78 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

15 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

103459:>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

149486:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

30820 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

9837 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

2399 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

204629:>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

214700:>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

5186 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

58182 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

Ok

Witnesses

Positive: 15, Negative: 999985

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=836eb3085132d3b06973469a08098df

Com=Rf Fr Rf Fr

Orig=Rfe LwSyndRR Fre Rfe LwSyndRR Fre

Affinity=[2, 3℄ [0, 1℄ ; (1,2) (3,0)

Observation IRIW+lwsyns Sometimes 15 999985

Time IRIW+lwsyns 0.70

As we see, the test validates. Namely we observe the non-SC behaviour of IRIW in spite of the presene

of two lwsyn barriers. We may also notie, in the exeutable output some meta-information related to

16

a�nity: it reads that threads 2 and 3 on the one hand and threads 0 and 1 on the other are onsidered

�lose� (i.e. will run on the same physial ore); while threads 1 and 2 on the one hand and threads 3 and 0

on the other are onsidered �far� (i.e. will run on di�erent ores).

Custom a�nity an be disabled by enabling another a�nity mode. For instane with -i 0 we speify an

a�nity inrement of zero. That is, a�nity ontrol is disabled altogether:

power7% ./IRIW+lwsyns.exe -i 0 -v

./IRIW+lwsyns.exe -i 0 -v

IRIW+lwsyns: n=1, r=1000, s=1000, +rm, i=0, p='0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31'

Test IRIW+lwsyns Allowed

Histogram (15 states)

...

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=836eb3085132d3b06973469a08098df

Com=Rf Fr Rf Fr

Orig=Rfe LwSyndRR Fre Rfe LwSyndRR Fre

Observation IRIW+lwsyns Never 0 1000000

Time IRIW+lwsyns 0.90

As we see, the test does not validate under those onditions.

Notie that setion 17 desribes a omplete experiment on a�nity ontrol.

2.3 Controlling exeutable �les

Test onditions Any exeutable �le produed by litmus7 aepts the following ommand line options.

-v Be verbose, an be repeated to inrease verbosity. Speifying -v is a onvenient way to look at the default

of options.

-q Be quiet.

-a <n> Run maximal number of tests onurrently for n available logial proessors � parameter a in

Se. 2.1. Notie that if a�nity ontrol is enabled (see below), -a 0 will set parameter a to the number
of logial proessors e�etively available.

-n <n> Run n tests onurrently � parameter n in Se. 2.1.

-r <n> Perform n runs � parameter r in Se. 2.1.

-fr <f> Multiply r by f (f is a �oating point number).

-s <n> Size of a run � parameter s in Se. 2.1.

-fs <f> Multiply s by f .

-f <f> Multiply s by f and divide r by f .

Notie that options -s and -r aept a generalised syntax for their integer argument: when su�xed by k

(resp. M) the integer gets multiplied by 103 (resp. 106).
The following options are aepted only for tests ompiled in indiret memory mode (see Se. 2.1):

-rm Do not shu�e pointer arrays, resulting a behaviour similar do diret mode, without reompilation.

17

+rm Shu�e pointer arrays, provided for regularity.

The following option is aepted only for tests ompiled with a spei�ed stride value (see Se. 2.1).

-st <n> Change stride to <n>. The default stride is spei�ed at ompile time by litmus7 option -stride.

The following option is aepted when enabled at ompile time:

-l <n> Insert the assembly ode of eah thread in a loop of size <n>.

A�nity If a�nity ontrol has been enabled at ompilation time (for instane, by supplying option -affinity

inr1 to litmus7), the exeutable �le produed by litmus7 aepts the following ommand line options.

-p <ns> Logial proessors sequene. The sequene <ns> is a omma separated list of integers, The default

sequene is inferred by the exeutable as 0, 1, . . . , A − 1, where A is the number of logial proessors

featured by the tested mahine; or is a sequene spei�ed at ompile time with litmus7 option -p.

-i <n> Inrement for alloating logial proessors to threads. Default is spei�ed at ompile time by litmus7

option -affinity inr<n>. Notie that -i 0 disable a�nity and that .exe �les rejet the -i option

when a�nity ontrol has not been enabled at ompile time.

+ra Perform random alloation of a�nity at eah test round.

+a Perform ustom a�nity.

Notie that when ustom a�nity is not available, would it be that the test soure laked meta-information

or that logial proessor topology was not spei�ed at ompile-time, then +a behaves as +ra.

Logial proessors are alloated test instane by test instane (parameter n of Se. 2.1) and then thread by

thread, sanning the logial proessor sequene left-to-right by steps of the given inrement. More preisely,

assume a logial proessor sequene P = p0, p1, . . . , pA−1 and an inrement i. The �rst proessor alloated
is p0, then pi, then p2i et, Indies in the sequene P are redued modulo A so as to wrap around. The

starting index of the alloation sequene (initially 0) is reorded, and oinidene with the index of the next

proessor to be alloated is heked. When oinidene ours, a new index is omputed, as the previous

starting index plus one, whih also beomes the new starting index. Alloation then proeeds from this new

starting index. That way, all the proessors in the sequene will get alloated to di�erent threads naturally,

provided of ourse that less than A threads are sheduled to run. See setion 2.2.3 for an example with

A = 16 and i = 4.

3 Advaned ontrol of test parameters

3.1 Timebase synhronisation mode

Timebase synhronisation of the testing loop iterations (see Se. 2.1) is seleted by litmus7 ommand line

option -barrier timebase. In that mode, test threads will �rst synhronise using polling synhronisation

barrier ode, agree on a target timebase value and then loop reading the timebase until it exeeds the target

value. Some tests demonstrate that timebase synhronisation is more preise than user synhronisation

(-barrier user and default).

For instane, onsider the x86 test 6.SB, a 6-thread analog of the SB test:

X86 6.SB

"Fre PodWR Fre PodWR Fre PodWR Fre PodWR Fre PodWR Fre PodWR"

{

}

P0 | P1 | P2 | P3 | P4 | P5 ;

MOV [x℄,$1 | MOV [y℄,$1 | MOV [z℄,$1 | MOV [a℄,$1 | MOV [b℄,$1 | MOV [℄,$1 ;

18

MOV EAX,[y℄ | MOV EAX,[z℄ | MOV EAX,[a℄ | MOV EAX,[b℄ | MOV EAX,[℄ | MOV EAX,[x℄ ;

exists

(0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0)

As for SB, the �nal ondition of 6.SB identi�es exeutions where eah thread loads the initial value 0 of a

loation that is writtent into by another thread.

Thread 0

a: Wx=1

b: Ry=0 l: Rx=0

: Wy=1

Thread 1

d: Rz=0

e: Wz=1

Thread 2

f: Ra=0

g: Wa=1

Thread 3

h: Rb=0

i: Wb=1

Thread 4

j: R=0

k: W=1

Thread 5

po

fr

fr

po

fr

po

fr

po

fr

po

fr

po

rf rf rf

rf

rf rf

We �rst ompile the test in user synhronisation mode, saving litmus7 output �les into the diretory R:

% mkdir -p R

% litmus7 -barrier user -vb true -o R 6.SB.litmus

% d R

% make

The additional ommand line option -vb true ativates the printing of some timing information on syn-

hronisations.

We then diretly run the test exeutable 6.SB.exe:

% ./6.SB.exe

Test 6.SB Allowed

Histogram (62 states)

7569 :>0:EAX=1; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

8672 :>0:EAX=0; 1:EAX=1; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

326 :>0:EAX=1; 1:EAX=0; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

907 :>0:EAX=0; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0) is NOT validated

Hash=107f1303932972b3abae3ee4027408e

Observation 6.SB Never 0 1000000

Time 6.SB 0.85

The targeted outome � reading zero in the EAX registers of the 6 threads � is not observed. We an

observe synhronisation times for all tests runs with the exeutable ommand line option +vb:

% ./6.SB.exe +vb

99999: 162768 420978 564546 -894 669468

99998: -93 3 81 -174 -651

19

99997: -975 -30 -33 93 -192

99996: 990 1098 852 1176 774

...

We see �ve olumns of numbers that list, for eah test run, the starting delays of P1, P2 et. with respet

to P0, expressed in timebase tiks. Obviously, synhronisation is rather loose, there are always two threads

whose starting delays di�er of about 1000 tiks.
We now ompile the same test in timebase synhronisation mode, saving litmus7 output �les into the

pre-existing diretory RT:

% mkdir -p RT

% litmus7 -barrier timebase -vb true -o RT 6.SB.litmus

% d RT

% make

And we run the test diretly (option -vb disable the printing of any synhronisation timing information):

% ./6.SB.exe -vb

Test 6.SB Allowed

Histogram (64 states)

60922 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

38299 :>0:EAX=1; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

598 :>0:EAX=0; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

142 :>0:EAX=1; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

Ok

Witnesses

Positive: 60922, Negative: 939078

Condition exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0) is validated

Hash=107f1303932972b3abae3ee4027408e

Observation 6.SB Sometimes 60922 939078

Time 6.SB 1.62

We now see that the test validates. Moreover all of the 64 possible outomes are observed.
Timebase synhronisation works as follows: at every iteration,

1. one of the threads reads timebase T ;

2. all threads synhronise by the means of a polling synhronisation barrier;

3. eah thread omputes Ti = T + δi, where δi is the timebase delay, a thread spei� onstant;

4. eah thread loops, reading the timebase until the read value exeeds Ti.

By default the timebase delay δi is 2
11 = 2048 for all threads.

The preision of timebase synhronisation an be illustrated by enabling the printing of all synhronisation

timings:

% ./6.SB.exe +vb

99999: 672294[1℄ 671973[1℄ 672375[1℄ 672144[1℄ 672303[1℄ 672222[1℄

99998: 4524[1℄ 4332[1℄ 4446[1℄ 2052[65℄ 2064[73℄ 4095[1℄

...

99983: 4314[1℄ 3036[1℄ 3141[1℄ 2769[1℄ 4551[1℄ 3243[1℄

99982:* 2061[36℄ 2064[33℄ 2067[11℄ 2079[12℄ 2064[14℄ 2064[24℄

99981: 2121[1℄ 2382[1℄ 2586[1℄ 2643[1℄ 2502[1℄ 2592[1℄

...

20

For eah test iteration and eah thread, two numbers are shown (1) the last timebase value read by and (2)

(in brakets [. . . ℄) how many iterations of loop 4. were performed. Additionally a star �*� indiates the

ourrene of the targeted outome. Here, we see that a nearly perfet synhronisation an be ahieved (f.

line 99982: above).

One timebase synhronisation have been seleted (litmus7 option -barrier timebase), test exeutable

behaviour an be altered by the following two ommand line options:

-ta <n> Change the timebase delay δi of all threads.

-tb <0:n0;1:n1;· · ·> Change the timebase delay δi of individual threads.

The litmus7 ommand line option -vb true (verbose barrier) governs the printing of synhronisation

timings. It omes handy when hoosing values for the -ta and -tb options. When set, the exeutable show

synhronisation timings for outomes that validate the test �nal ondition. This default behaviour an be

altered with the following two ommand line options:

-vb Do not show synhronisation timings.

+vb Show synhronisation timings for all outomes.

Synhronisation timings are expressed in timebase tiks. The format depends on the synhronisation mode

(litmus7 option -barrier). This setion just gave two examples for user mode (timings are show as di�erenes

from thread P0); and for timebase mode (timings are shown as di�erenes from a ommonly agreed by all

thread timebase value). Notie that, when a�nity ontrol is enabled, the running logial proessors of

threads are also shown.

3.2 Advaned prefeth ontrol

Supplying the tags ustom, stati, stati1 or stati2 to litmus7 ommand line option -preload om-

mands the insertion of ahe prefeth or �ush instrutions before every test instane.

In ustom mode the exeution of suh ahe management instrution is under total user ontrol, the

other, �stati�, modes o�er less ontrol to the user, for the sake of not altering test ode proper.

3.2.1 Custom prefeth

Custom prefeth mode o�ers omplete ontrol over ahe management instrutions. Users enable this mode

by supplying the ommand line option -preload ustom to litmus7. For instane one may ompile the x86

test 6.SB.litmus as follows:

% mkdir -p R

% litmus7 -mem indiret -preload ustom -o R 6.SB.litmus

% d R

% make

Notie the test is ompiled in indiret memory mode, in order to redue false sharing e�ets.

The exeutable 6.SB.exe aepts two new ommand line options: -prf and -pra. Those options takes

arguments that desribe ahe management instrutions. The option -pra takes one letter that stands for a

ahe management instrution as we here desribe:

I: do nothing, F: ahe �ush, T: ahe touh, W: ahe touh for a write.

All those ahe management instrutions are not provided by all arhitetures, in ase some instrution is

missing, the letters behave as follows:

F: do nothing, T: do nothing, W: behave as T.

With -pra X the ommanded ation applies to all threads and all variables, for instane:

21

% ./6.SB.exe -pra T

will perform a run where every test thread touhes the test loations that it refers to (i.e. x and y for

Thread 0, y and z for Thread 1, et.) before exeuting test ode proper. Although one may ahieve

interesting results by using this -pra option, the more seletive -prf option should prove more useful.

The -prf option takes a omma separated list of ahe managment diretives. A ahe management di-

retive is n:lo=X , where n is a thread number, lo is a program variable, and X is a ahe manage-

ment ontrole letter. For instane, -prf 0:y=T instruts thread 0 to touh loation y. More generally,

having eah thread of the test 6.SB to touh the memory loation it reads with its seond instrution

would favor reading the initial value of these loations, and thus validating the �nal ondition of the test

�(0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0)�.

Notie that those loations an be found by looking at the test ode or at the diagram of the target

exeution. Let us have a try:

./6.SB.exe -prf 0:y=T,1:z=T,2:a=T,3:b=T,4:=T,5:x=T

Test 6.SB Allowed

Histogram (63 states)

10 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

Witnesses

Positive: 10, Negative: 999990

...

Prefeth=0:y=T,1:z=T,2:a=T,3:b=T,4:=T,5:x=T

...

As an be seen, the �nal ondition is validated. Also notie that the prefeth diretives used during the run

are reminded. If given several times, -prf options umulate, the rightmost diretives taking preedene in

ase of ambiguity. As a onsequene, one may ahieve the same prefething e�et as above with:

% ./6.SB.exe -prf 0:y=T -prf 1:z=T -prf 2:a=T -prf 3:b=T -prf 4:=T -prf 5:x=T

3.2.2 Prefeth metadata

The soure ode of tests may inlude prefeth diretives as metadata pre�xed with �Prefeth=�. In partiular,

the generators of the diy7 suite (see Part II) produe suh metadata. For instane in the ase of the 6.SB

test (generated soure 6.SB+Prefeth.litmus), this metadata reads:

Prefeth=0:x=F,0:y=T,1:y=F,1:z=T,2:z=F,2:a=T,3:a=F,3:b=T,4:b=F,4:=T,5:=F,5:x=T

That is, eah thread �ushes the loation it stores to and touhes eah loation it reads from. Notie that

eah thread starts with a memory loation aess (here a store) and ends with another (here a load). The

idea simply is to aelerate the exit aess (with a ahe touh) while delaying the entry aess (with a ahe

�ush).

When prefeth metadata is available, it ats as the default of prefeth diretives:

% litmus7 -mem indiret -preload ustom -o R 6.SB+Prefeth.litmus

% d R

% make

Then we run the test by:

% ./6.SB+Prefeth.exe

Test 6.SB Allowed

Histogram (63 states)

674 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

22

...

Witnesses

Positive: 674, Negative: 999326

...

Prefeth=0:x=F,0:y=T,1:y=F,1:z=T,2:a=T,2:z=F,3:a=F,3:b=T,4:b=F,4:=T,5:=F,5:x=T

...

One may notie that the prefeth diretives from the soure �le medata found its way to the test exeutable.

As with any kind of metadata, one an hange the prefeth metadata by editing the litmus soure �le,

or better by using the -hints ommand line option. The -hints ommand line option takes a �lename as

argument. This �le is a mapping that assoiates new metadata to test names. As an example, we reverse

diy7 sheme for ahe management diretives: aelerating entry aesses and delaying exit aesses:

% at map.txt

6.SB Prefeth=0:x=W,0:y=F,1:y=W,1:z=F,2:a=F,2:z=W,3:a=W,3:b=F,4:b=W,4:=F,5:=W,5:x=F

% litmus7 -mem indiret -preload ustom -hints map.txt -o R 6.SB.litmus

% d R

% make

...

% ./6.SB.exe

Test 6.SB Allowed

Histogram (63 states)

24 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

Prefeth=0:x=W,0:y=F,1:y=W,1:z=F,2:a=F,2:z=W,3:a=W,3:b=F,4:b=W,4:=F,5:=W,5:x=F

...

As we see above, the �nal ondition validates. It does so in spite of the apparently unfavourable ahe

management diretives.

We an experiment further without reompilation, by using the -pra and -prf ommand line options of

the test exeutable. Those are parsed left-to-right, so that we an (1) anel any default ahe management

diretive with -pra I and (2) enable ahe touh for the stores:

% ./6.SB.exe -pra I -prf 0:x=W -prf 1:y=W -prf 2:z=W -prf 3:a=W -prf 4:b=W -prf 5:=W

Test 6.SB Allowed

...

Witnesses

Positive: 0, Negative: 1000000

...

Prefeth=0:x=W,1:y=W,2:z=W,3:a=W,4:b=W,5:=W

As we see, the �nal ondition does not validate.

By ontrast, �ushing or touhing the loations that the threads load permit to repetitively ahieve

validation:

hi% ./6.SB.exe -pra I -prf 0:y=F -prf 1:z=F -prf 2:a=F -prf 3:b=F -prf 4:=F -prf 5:x=F

Test 6.SB Allowed

Histogram (63 states)

211 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

% ./6.SB.exe -pra I -prf 0:y=T -prf 1:z=T -prf 2:a=T -prf 3:b=T -prf 4:=T -prf 5:x=T

Test 6.SB Allowed

Histogram (63 states)

10 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

23

As a onlusion, interpreting the impat of ahe management diretives is not easy. However, ustom

preload mode (litmus ommand line option -preload ustom) and test exeutable options -pra and -prf

allow experimentation on spei� tests.

3.2.3 �Stati� prefeth ontrol

Custom prefeth mode omes handy when one wants to tailor ahe management diretives for a partiular

test. In pratie, we run bathes of tests using soure metadata for prefeth diretives. In suh a setting, the

ode that interprets the prefeth diretives is useless, as we do not use the -prf option of the test exeutables.

As this ode get exeuted before eah test thread ode, it may impat test results. It is desirable to supress

this ode from test exeutables, still performing ahe management instrutions. To that aim, litmus7

provides some �stati� preload modes, enabled with ommand line options -preload stati, -preload

stati1 and -preload stati2.

In the former mode -preload stati and without any further user intervention, eah test thread exeutes

the ahe management instrutions ommanded by the Prefeth metadata:

% mkdir -p S

% litmus7 -mem indiret -preload stati -o R 6.SB+Prefeth.litmus

% make -C S

% S/6.SB+Prefeth.exe

Test 6.SB Allowed

Histogram (63 states)

804 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

Observation 804 999196

...

As we an see above, the e�et of the ahe management instrutions looks more favorable than in ustom

preload mode.

Users still have a limited ontrol on the exeution of ahe management instrutions: produed exeutable

aept a new -prs <n> option, whih take a positive or null integer as argument. Then, eah test thread

exeutes the ahe management instrutions ommanded by soure metadata with probability 1/n, the
speial value n = 0 disabling prefeth altogether. The default for the -prs options is �1� (always exeute

the ahe management instrutions). Let us try:

% S/6.SB+Prefeth.exe -prs 0 | grep Observation

Observation 6.SB Never 0 1000000

% S/6.SB+Prefeth.exe -prs 1 | grep Observation

Observation 6.SB Sometimes 901 999099

% S/6.SB+Prefeth.exe -prs 2 | grep Observation

Observation 6.SB Sometimes 29 999971

% S/6.SB+Prefeth.exe -prs 3 | grep Observation

Observation 6.SB Sometimes 16 999984

In those experiments we show the �Observation� �eld of litmus7 output: this �eld gives the ount of

outomes that validate the �nal ondition, followed by the ount of outomes that do not validate the �nal

ondition. The above ounts on�rm that ahe management instrutions favor validation.

The remaining preload modes stati1 and stati2 are similar, exept that they produe exeutable �les

that do not aept the -prs option. Furthermore, in the former mode -preload stati1 ahe management

instrutions are always exeuted, while in the latter mode -preload stati2 ahe management instrutions

are exeuted with probability 1/2. Those modes thus at as pure stati mode (litmus7 option -preload

stati), with runtime options -prs 1 and -prs 2 respetively. Moreover, as the test sa�old inludes no

ode to interpret the -prs <n> swith, the test ode is less perturbed. In pratie and for the 6.SB example,

there is little di�erene:

24

% mkdir -p S1 S2

% litmus7 -mem indiret -preload stati1 -o S1 6.SB+Prefeth.litmus

% litmus7 -mem indiret -preload stati2 -o S2 6.SB+Prefeth.litmus

% make -C S1 && make -C S2

...

% S1/6.SB+Prefeth.exe | grep Observation

Observation 6.SB Sometimes 1119 998881

% S2/6.SB+Prefeth.exe | grep Observation

Observation 6.SB Sometimes 16 999984

4 Usage of litmus7

Arguments

litmus7 takes �le names as ommand line arguments. Those �les are either a single litmus test, when having

extension .litmus, or a list of �le names, when pre�xed by �. Of ourse, the �le names in ��les an

themselves be ��les.

Options

There are many ommand line options. We desribe the more useful ones:

General behaviour

-version Show version number and exit.

-libdir Show installation diretory and exit.

-v Be verbose, an be repeated to inrease verbosity.

-mah <name> Read on�guration �le name.fg. See the next setion for the syntax of on�guration �les.

-o <dest> Save C-soure of test �les into <dest> instead of running them. If argument <dest> is an

arhive (extension .tar) or a ompressed arhive (extension .tgz), litmus7 builds an arhive: this is

the �ross ompilation feature� demonstrated in Se. 1.2. Otherwise, <dest> is interpreted as the name

of an existing diretory and tests are saved in it.

-driver (shell|C|XCode) Choose the driver that will run the tests. In the �shell� (and default) mode,

eah test will be ompiled into an exeutable. A dediated shell sript run.sh will launh the test

exeutables. In the �C� mode, one exeutable run.exe is produed, whih will launh the tests. Finally,

the XCode mode is for inlusion of the tests into a dediated iOS App, whih we do not distribute at

the moment.

-rossrun <(user�)?host(:port)?|adb> When the shell driver is used (-driver shell above), instrut

the run.sh sript to run individual tests on a remote mahine. The remote host an be ontated by

the means of ssh or the Android Debug Bridge.

ssh user is a login name on the the remote host, <host> is the name of the remote host, and port is

a port-number whih an be omitted when standard (22).

adb Tests will be run in the remote diretory /data/tmp.

This option may be useful when the tested mahine has little disk spae or a rippled installation.

Default is disabled � i.e. run tests on the mahine where the run.sh sript runs.

-index <�name> Save the soure names of ompiled �les in index �le �name.

25

Test onditions The following options set the default values of the options of the exeutable �les produed:

-a <n> Run maximal number of tests onurrently for n available logial proessors � set default value for

-a of Se. 2.3. Default is 1 (run one test). When a�nity ontrol is enabled, the value 0 has the speial
meaning of having exeutables to set the number of available logial proessors aording to how many

are atually present.

-limit <bool> Do not proess tests with more than n threads, where n is the number of available ores

de�ned above. Default is true.

-r <n> Perform n runs � set default value for option -r of Se. 2.3. The option aepts generalised syntax

for integers and default is 10.

-s <n> Size of a run � set default value for option -s of Se. 2.3. The option aepts generalised syntax

for integers and default is 100000 (or 100k).

The following additional options ontrol the various modes desribed in Se. 2.1, and more. Those annot

be hanged without running litmus7 again:

-barrier (user|userfene|pthread|none|timebase) Set synhronisation mode, default user. Synhro-

nisation modes are desribed in Se. 2.1

-launh (hanging|fixed) Set launh mode, default hanging.

-mem (indiret|diret) Set memory mode, default indiret. It is possible to instrut exeutables om-

piled in indiret mode to behave almost as if ompiled in diret mode, see Se. 2.3.

-stride <n> Speify a stride value of <n> � set default value for option -st of Se. 2.3. See Se. 2.1 for

details on the stride parameter. If <n> is negative or zero, restore the default, whih is stride feature

disabled.

-st <n> Alias for -stride <n>.

-para (self|shell) Perform several tests onurrently, either by forking POSIX threads (as desribed in

Se. 2.1), or by forking Unix proesses. Only applies for ross ompilation. Default is self.

-allo (dynami|stati|before) Set memory alloation mode. In �dynami� and �before� modes, the

memory used by test threads is alloated with mallo� in �before� mode, memory is alloated before

forking test instanes. In �stati� mode, the memory is pre-alloated as stati arrays. In that latter

ase, the size of alloated arrays depend upon ompile time de�ned parameters: the number of available

logial proessors (see option -a <n>) and the size of a run (see option -s <n>). It remains possible to

hange those those at exeution time, provided the resulting memory size does not exeed the ompile

time value. Default is dynami.

-preload (no|random|ustom|stati|stati1|stati2) Speify preload mode (see Se. 2.1), default is

random. Starting from version 5.0 we provide additional �ustom� and �stati� modes for a �ner ontrol

of prefething and �ushing of some memory loations by some threads. See Se 3.2.

-safer (no|all|write) Speify safer mode, default is write. When instruted to do so, exeutable �les

perform some onsisteny heks. Those are intended both for debugging and for dynamially heking

some assumptions on POSIX threads that we rely upon. More spei�ally the test harness heks for

the stabilisation of memory loations after a test round in the �all� and �write� mode, while the

initial values of memory loations are heked in �all� mode.

-speedhek (no|some|all) Quik ondition hek mode, default is �no�. In mode �some�, test exeutable

will stop as soon as its ondition is settled. In mode �all�, the run.sh sript will additionally not run

the test if invoked one more later.

26

The following optiondra ommands a�nity ontrol:

-affinity (none|inr<n>|random|ustom) Enable (of disable with tag none) a�nity ontrol, speifying

default a�nity mode of exeutables. Default is none, i.e. exeutables do not inlude a�nity ontrol

ode. The various tags are interpreted as follows:

1. inr<n>: integer <n> is the inrement for alloating logial proessors to threads � see Se. 2.2.

Notie that with -affinity inr0 the produed ode features a�nity ontrol, whih exeutable

�les do not exerise by default.

2. random: exeutables perform random alloation of test threads to logial proessors.

3. ustom: exeutables perform ustom alloation of test threads to logial proessors.

Notie that the default for exeutables an be overridden using options -i,+ra and +a of Se. 2.3.

-i <n> Alias for -affinity inr<n>.

Notie that a�nity ontrol is not implemented for MaOs.

The following options are signi�ant when a�nity ontrol is enabled. Otherwise they are silent no-ops.

-p <ns> Speify the sequene of logial proessors. The notation <ns> stands for a omma separated list of

integers. Set default value for option -p of Se. 2.3. Default for this -p option will let exeutable �les

ompute the logial proessor sequene themselves.

-fore_afffinity <bool> Code that sets a�nity will spin until all spei�ed ores (as given with option

-avail <n>) proessors are up. This option is neessary on devies that let ore sleep when the

omputing load is low. Default is false.

Custom a�nity ontrol (see Se. 2.2.4) is enabled, �rst by enabling a�nity ontrol (e.g. with -affinity

...), and then by speifying a logial proessor topology with options -smt and -smt_mode.

-smt <n> Speify that logial proessors are lose by groups of n, default is 1.

-smt_mode (none|seq|end) Speify how �lose� logial proessors are numbered, default is none. In mode �end�,

logial proessors of the same ore are numbered as c, c + Ac et. where c is a physial ore number

and Ac is the number of physial ores available. In mode �seq�, logial proessors of the same ore

are numbered in sequene.

Notie that ustom a�nity works only for those tests that inlude the proper meta-information. Otherwise,

ustom a�nity silently degrades to random a�nity.

Finally, a few misellaneous options are doumented:

-l <n> Insert the assembly ode of eah thread in test in a loop of size <n>. Aepts generalised integer

syntax, disabled by default. Sets default value for option -l of Se. 2.3.

This feature may prove useful for measuring running times that are not too muh perturbed by the

test harness, in ombination with options -s 1 -r 1.

-vb <bool> Disable/enable the printing of synhronisation timings, default is false.

This feature may prove useful for analysing the synhronisation behaviour of a spei� test, see Se. 3.1.

-opts <flags> Set g ompilation �ags (defaults: X86="-fomit-frame-pointer -O2", PPC/ARM="-O2").

-g <name> Change the name of C ompiler, default g.

-linkopt <flags> Set g linking �ags. (default: void).

-gas <bool> Emit Gnu as extensions (default Linux/Ma=true, AIX=false)

27

Target arhiteture desription Litmus ompilation hain may slightly vary depending on the following

parameters:

-os (linux|ma|aix) Set target operating system. This parameter mostly impats some of g options.

Default linux.

-ws (w32|w64) Set word size. This option �rst selets g 32 or 64 bits mode, by providing it with the

appropriate option (-m32 or -m64 on linux, -maix32 or -maix64 on AIX). It also slightly impats ode

generation in the orner ase where memory loations hold other memory loations. Default is a bit

ontrived: it ats as w32 as regards ode generation, while it provides no 32/64 bits mode seletion

option to g.

Change input Some items in the soure of tests an be hanged at the very last moment. The new

items are de�ned in mapping �les whose names are arguments to the appropriate ommand line options.

Mapping �les simply are lists of pairs, with one line starting with a test name, and the rest of line de�ning

the hanged item. The hanged item may also ontains several lines: in that ase it should be inluded in

double quotes �".�.

-names <file> Run litmus7 only on tests whose names are listed in <file>.

-rename <file> Change test names.

-kinds <file> Change test kinds. This amonts to hanging the quanti�er of �nal onditions, with kind

Allow being exists, kind Forbid being ~exists and kind Require being forall.

-onds <file> Change the �nal ondition of tests.

-hints <file> Change meta-data, or hints. Hints ommand avaned features suh as ustom a�nity

(option -affinity ustom and Se. 2.2.4) and prefeh ontrol (option -preload ustom and Se. 3.2).

Observe that the rename mapping is applied �rst. As a result kind or ondition hange must refer to new

names. For instane, we an highlight that a X86 mahine is not sequentially onsistent by �rst renaming SB

into SB+SC, and then hanging the �nal ondition. The new ondition expresses that the �rst instrution

(a store) of one of the threads must ome �rst:

rename.txt ond.txt

SB SB+SC

SB+SC "forall (0:EAX=1 \/ 1:EAX=1)"

Then, we run litmus:

% litmus7 -mah x86 -rename rename.txt -onds ond.txt SB.litmus

%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for SB.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%

X86 SB+SC

"Fre PodWR Fre PodWR"

{x=0; y=0;}

P0 | P1 ;

MOV [x℄,$1 | MOV [y℄,$1 ;

MOV EAX,[y℄ | MOV EAX,[x℄ ;

28

forall (0:EAX=1 \/ 1:EAX=1)

Generated assembler

#START _litmus_P1

movl $1,(%r8,%rdx)

movl (%rdx),%eax

#START _litmus_P0

movl $1,(%rdx)

movl (%r8,%rdx),%eax

Test SB+SC Required

Histogram (4 states)

39954 *>0:EAX=0; 1:EAX=0;

3979407:>0:EAX=1; 1:EAX=0;

3980444:>0:EAX=0; 1:EAX=1;

195 :>0:EAX=1; 1:EAX=1;

No

Witnesses

Positive: 7960046, Negative: 39954

Condition forall (0:EAX=1 \/ 1:EAX=1) is NOT validated

Hash=7dbd6b8e6dd4ab2ef3d48b0376fb2e3

Observation SB+SC Sometimes 7960046 39954

Time SB+SC 0.48

One sees that the test name and �nal ondition have hanged.

Con�guration �les

The syntax of on�guration �les is minimal: lines �key = arg� are interpreted as setting the value of param-

eter key to arg. Eah parameter has a orresponding option, usually -key, exept for single-letter options:

option key arg

-a avail integer

-s size_of_test integer

-r number_of_run integer

-p pros list of integers

-l loop integer

Notie that litmus7 in fat aepts long versions of options (e.g. -avail for -a).

As ommand line option are proessed left-to-right, settings from a on�guration �le (option -mah) an

be overridden by a later ommand line option. Some on�guration �les for the mahines we have tested are

present in the distribution. As an example here is the on�guration �le hpx.fg.

size_of_test = 2000

number_of_run = 20000

os = AIX

ws = W32

A node has 16 ores X2 (SMT)

avail = 32

Lines introdued by # are omments and are thus ignored.

Con�guration �les are searhed �rst in the urrent diretory; then in any diretory spei�ed by setting

the shell environment variable LITMUSDIR; and then in litmus installation diretory, whih is de�ned while

ompiling litmus7.

29

Part II

Generating tests

5 Preamble

We wrote diy7 as part of our empirial approah to studying relaxed memory models: developing in tan-

dem testing tools and models of multiproessor behaviour. In this tutorial, we attempt an independent

tool presentation. Readers interested by the ompanion formalism are invited to refer to our CAV 2010

publiation [1℄.

The distribution inludes additional test generators: diyone7 for generating one test and diyross7 for

generating simple variations on one test.

5.1 Relaxation of Sequential Consisteny

Relaxation is one of the key onepts behind simple analysis of weak memory models. We de�ne a andi-

date relaxation by referene to the most natural model of parallel exeution in shared memory: Sequential

Consisteny (SC), as de�ned by L. Lamport [3℄. A parallel program running on a sequentially onsistent

mahine behaves as an interleaving of its sequential threads.

Consider one more the example SB.litmus:

X86 SB

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y℄,$1 | MOV [x℄,$1 ; #(a)Wy1 | ()Wx1

MOV EAX,[x℄ | MOV EAX,[y℄ ; #(b)Rx0 | (d)Ry0

exists (0:EAX=0 /\ 1:EAX=0)

To fous on interation through shared memory, let us onsider memory aesses, or memory events. A

memory event will hold a diretion (write, written W, or read, written R), a memory loation (written x, y)

a value and a unique label. In any run of the simple example above, four memory events our: two writes

(c)Wx1 and (a)Wy1 and two reads (b)Rxv1 with a ertain value v1 and (d)Ryv2 with a ertain value v2.
If the program's behaviour is modelled by the interleaving of its events, the �rst event must be a write

of value 1 to loation x or y and at least one of the loads must see a 1. Thus, a SC mahine would exhibit

only three possible outomes for this test:

Allowed: 0:EAX = 0 ∧ 1:EAX = 1

Allowed: 0:EAX = 1 ∧ 1:EAX = 0

Allowed: 0:EAX = 1 ∧ 1:EAX = 1

However, running (see Se. 1.1) this test on a x86 mahine yields an additional result:

Allowed: 0:EAX = 0 ∧ 1:EAX = 0

And indeed, x86 allows eah write-read pair on both proessors to be reordered [2℄: thus the write-read

pair in program order is relaxed on eah of these arhitetures. We annot use SC as an aurate memory

model for modern arhitetures. Instead we analyse memory models as relaxing the ordering onstraints of

the SC memory model.

30

5.2 Introdution to andidate relaxations

Consider again our lassial example, from a SC perspetive. We brie�y argued that the outome �0:EAX

= 0 ∧ 1:EAX = 0� is forbidden by SC. We now present a more omplete reasoning:

• From the ondition on outome, we get the values in read events: (b)Rx0 and (d)Ry0.

• Beause of these values, (b)Rx0 must preede the write (c)Wx1 in the �nal interleaving of SC. Similarly,

(d)Ry0 must preede the write (a)Wy1. This we note (b)
fr

→ (c) and (d)
fr

→ (a).

• Beause of sequential exeution order on one single proessor (a.k.a. program order), (a)Wy1 must

preede (b)Rx0 (�rst proessor); while (c)Wx1 must preede (d)Ry0 (seond proessor). This we note

(a)
po

→ (b) and (c)
po

→ (d).

• We synthesise the four onstraints above as the following graph:

(a) Wy1

(b) Rx0

() Wx1

(d) Ry0

po rf

fr

porf

fr

rf

rf

Constraint arrows or global arrows are shown in brown olour. As the graph ontains a yle of brown

arrows, the events annot be ordered. Hene the exeution presented is not allowed by SC.

The key idea of diy7 resides in produing programs from similar yles. To that aim, the edges in yles

must onvey additional information:

• For

po

→ edges, we onsider whether the loations of the events on both sides of the edge are the same

or not ('s' or 'd'); and the diretion of these events (W or R). For instane the two

po

→ edges in the

example are PodWR. (program order edge between a write and a read whose loations are di�erent).

• For

fr

→ edges, we onsider whether the proessor of the events on both sides of the edge are the same

or not ('i' for internal, or 'e' for external). For instane the two

fr

→ edges in the example are Fre.

So far so good, but our x86 mahine produed the outome 0:EAX=0 ∧ 1:EAX=0. The Intel Memory

Ordering White Paper [2℄ spei�es: �Loads may be reordered with older stores to di�erent loations�, whih

we rephrase as: PodWR is relaxed. Considering Fre to be safe, we have the graph:

31

(a)Wy1

(b)Rx0

()Wx1

(d)Ry0

PodWR Rf

Fre

PodWRRf

Fre

Rf

Rf

And the brown sub-graph beomes ayli.

We shall see later why we hoose to relax PodWR and not Fre. At the moment, we observe that we an

assume PodWR to be relaxed and Fre not to be (i.e. to be safe) and test our assumptions, by produing

and running more litmus tests. The diy7 suite preisely provides tools for this approah.

As a �rst example, SB.litmus an be reated as follows:

% diyone7 -arh X86 -name SB Fre PodWR Fre PodWR

As a seond example, we an produe several similar tests as follows:

% diy7 -arh X86 -safe Fre -relax PodWR -name SB

Generator produed 2 tests

Relaxations tested: {PodWR}

diy7 produes two litmus tests, SB000.litmus and SB001.litmus, plus one index �le �all. One of the litmus

tests generated is the same as above, while the new test is:

% at SB001.litmus

X86 SB001

"Fre PodWR Fre PodWR Fre PodWR"

Cyle=Fre PodWR Fre PodWR Fre PodWR

Relax=PodWR

Safe=Fre

{ }

P0 | P1 | P2 ;

MOV [z℄,$1 | MOV [x℄,$1 | MOV [y℄,$1 ;

MOV EAX,[x℄ | MOV EAX,[y℄ | MOV EAX,[z℄ ;

exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0)

% at �all

diy -arh X86 -safe Fre -relax PodWR -name SB

Revision: 3333

SB000.litmus

SB001.litmus

diy7 �rst generates yles from the andidate relaxations given as arguments, up to a limited size, and

then generates litmus tests from these yles.

5.3 More andidate relaxations

We assume the memory to be oherent. Coherene implies that, in a given exeution, the writes to a given

loation are performed by following a sequene, or oherene order, and that all proessors see the same

sequene.

32

In diy7, the oherene orders are spei�ed indiretly. For instane, the andidate relaxation Wse (resp.

Wsi) spei�es two writes, performed by di�erent proessors (resp. the same proessor), to the same loation ℓ,
the �rst write preeding the seond in the oherene order of ℓ. The ondition of the produed test then

selets the spei�ed oherene orders. Consider for instane:

% diyone7 -arh X86 -name x86-2+2W Wse PodWW Wse PodWW

The yle that reveals a violation of the SC memory model is:

(a) Wy2

(b) Wx1

() Wx2

(d) Wy1

PodWW rf

Wse

PodWWrf

Wse

So the oherene order is 0 (initial store, not depited), 1, 2 for both loations x and y. While the produed

test is:

X86 x86-2+2W

"Wse PodWW Wse PodWW"

Prefeth=0:x=F,0:y=W,1:y=F,1:x=W

Com=Ws Ws

Orig=Wse PodWW Wse PodWW

{

}

P0 | P1 ;

MOV [x℄,$2 | MOV [y℄,$2 ;

MOV [y℄,$1 | MOV [x℄,$1 ;

exists

(x=2 /\ y=2)

By the oherene hypothesis, heking the �nal value of loations su�es to haraterise those two oherene

orders, as expressed by the �nal ondition of x86-2+2W:

exists (x=2 /\ y=2)

See Se. 9 for alternative means to identify oherene orders.

Candidate relaxations Rfe and R� relate writes to reads that load their value. We are now equipped to

generate the famous iriw test (independent reads of independent writes):

% diyone7 -arh X86 Rfe PodRR Fre Rfe PodRR Fre -name iriw

We generate its internal variation (i.e. where all Rfe are replaed by R�) as easily:

% diyone7 -arh X86 Rfi PodRR Fre Rfi PodRR Fre -name iriw-internal

We get the yles of Fig. 1, and the litmus tests of Fig. 2.

Candidate relaxations given as arguments really are a �onise spei�ation�. As an example, we get iriw

for Power, simply by hanging -arh X86 into -arh PPC.

33

Figure 1: Cyles for iriw and iriw-internal

(a) Ry1

(b) Rx0

() Wx1

(d) Rx1

(e) Ry0

(f) Wy1

PodRR

Fre

Rferf

PodRR

Fre

Rfe

rf

rf

rf

(a) Wx1

(b) Rx1

() Ry0

(d) Wy1

(e) Ry1

(f) Rx0

R� rf

PodRR

Fre

R�rf

PodRR

Fre

rf

rf

Figure 2: Litmus tests iriw and iriw-internal

X86 iriw

"Rfe PodRR Fre Rfe PodRR Fre"

{ }

P0 | P1 | P2 | P3 ;

MOV EAX,[y℄ | MOV [x℄,$1 | MOV EAX,[x℄ | MOV [y℄,$1 ;

MOV EBX,[x℄ | | MOV EBX,[y℄ | ;

exists (0:EAX=1 /\ 0:EBX=0 /\ 2:EAX=1 /\ 2:EBX=0)

X86 iriw-internal

"Rfi PodRR Fre Rfi PodRR Fre"

{ }

P0 | P1 ;

MOV [x℄,$1 | MOV [y℄,$1 ;

MOV EAX,[x℄ | MOV EAX,[y℄ ;

MOV EBX,[y℄ | MOV EBX,[x℄ ;

exists

(0:EAX=1 /\ 0:EBX=0 /\

1:EAX=1 /\ 1:EBX=0)

34

% diyone7 -arh PPC Rfe PodRR Fre Rfe PodRR Fre

PPC A

"Rfe PodRR Fre Rfe PodRR Fre"

{

0:r2=y; 0:r4=x;

1:r2=x;

2:r2=x; 2:r4=y;

3:r2=y;

}

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwz r3,0(r4) | stw r1,0(r2) | lwz r3,0(r4) | stw r1,0(r2) ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0)

Also notie that without the -name option, diyone7 writes its result to standard output.

5.4 Summary of simple andidate relaxations

We summarise the andidate relaxations available on all arhitetures.

5.4.1 Communiation andidate relaxations

We all ommuniation andidate relaxations the relations between two events ommuniating through

memory, though they ould belong to the same proessor. Thus, these events operate on the same memory

loation.

diy7 syntax Soure Target Proessor Additional property

Rfi W R Same Target reads its value from soure

Rfe W R Di�erent Target reads its value from soure

Wsi W W Same Soure preedes target in oherene order

Wse W W Di�erent Soure preedes target in oherene order

Fri R W Same Soure reads a value from a write that pre-

edes target in oherene order

Fre R W Di�erent Soure reads a value from a write that pre-

edes target in oherene order

5.4.2 Program order andidate relaxations

We all program order andidate relaxations eah relation between two events in the program order. These

events are on the same proessor, sine they are in program order. As regards ode output, diy7 interprets

a program order andidate relaxation by generating two memory instrutions (load or store) following one

another.

Program order andidate relaxations have the following syntax:

Po(s|d)(R|W)(R|W)

where:

• s (resp. d) indiates that the two events are to the same (resp. di�erent) loation(s);

• R (resp. W) indiates an event to be a read (resp. a write);

In pratie, we have:

35

diy7syntax Soure Target Loation

PosRR R R Same

PodRR R R Di�

PosRW R W Same

PodRW R W Di�

PosWW W W Same

PodWW W W Di�

PosWR W R Same

PodWR W R Di�

It is to be notied that PosWR, PosWW and PosRW are similar to R�, Wsi and Fri, respetively. More

preisely, diy7 is unable to onsider a PosWR (or PosWW, or PosRW) andidate relaxation as not being also

a R� (or Wsi, or Fri) andidate relaxation. However, litmus tests onditions may be more informative in the

ase of R� and Fri.

5.4.3 Fene andidate relaxations

Relaxed arhitetures provide spei� instrutions, namely barriers or fenes, to enfore order of memory

aesses. In diy7 the presene of a fene instrution is spei�ed with fene andidate relaxations, similar to

program order andidate relaxations, exept that a fene instrution is inserted. Hene we have FenedsRR,

FeneddRR. et. The inserted fene is the strongest fene provided by the arhiteture � that is, mfene

for x86 and syn for Power.

Fenes an also be spei�ed by using spei� names. More preisely, we have MFene for x86; while on

Power we have Syn, LwSyn, Eieio and Isyn. Hene, to yield two reads to di�erent loations and separated

by the lightweight Power barrier lwsyn, we speify LwSyndRR. On ARM we have DMB, DSB and ISB.

6 Testing andidate relaxations with diy7

The tool diy7 an probably be used in various, reative, ways; but the tool �rst stems from our tehnique for

testing relaxed memory models. The -safe and -relax options are ruial here. We desribe our tehnique

by the means of an example: X86-TSO.

6.1 Priniple

Before engaging in testing it is important to ategorise andidate relaxations as safe or relaxed.

This an done by interpretation of vendor's doumentation. For instane, the iriw test of Se. 5.3 is the

example 7.7 of [2℄ �Stores Are Seen in a Consistent Order by Other Proessors�, with a Forbid spei�ation.

Hene we dedue that Fre, Rfe and PodRR are safe. Then, from test iriw-internal of Se. 5.3, whih is Intel's

test 7.5 �Intra-Proessor Forwarding Is Allowed� with an allow spei�ation, we dedue that R� is relaxed.

Namely, the yle of iriw-internal is �Fre R� PodRR Fre R� PodRR�. Therefore, the only possibility is for

R� to be relaxed.

Overall, we dedue:

• Candidate relaxations PosWR (R�) and PodWR are relaxed

• The remaining andidate relaxations PosRR, PodRR, PosWW (Wsi), PodWW, PosRW (Fri), Fre and

Wse are safe. Fene relaxations FenedsWR and FeneddWR are also safe and worth testing.

Of ourse these remain assumptions to be tested. To do so, we perform one series of tests per relaxed

andidate relaxation, and one series of tests for on�rming safe andidate relaxations as muh as possible.

Let S be all safe andidate relaxations.

36

• Let r be a relaxed andidate relaxation. We produe tests for on�rming r being relaxed by diy

-relax r -safe S. We run these tests with litmus7. If one of the tests yields Ok, then r is on�rmed
to be relaxed, provided the experiments on S below do not fail.

• For on�rming the safe set, we produe tests by diy -safe S. We run these tests as muh as possible

and expet never to see Ok.

Namely, diy7 builds yles as follows:

• diy -relax r -safe S build yles with at least one r taking other andidate relaxations from S.

• diy -safe S build yles from the andidate relaxations in S.

For the purpose of on�rming relaxed andidate relaxations, S an be replaed by a subset.

6.2 Testing x86

Repeating ommand line options is painful and error prone. Besides, on�guration parameters may get lost.

Thus, we regroup those in on�guration �les that simply list the options to be passed to diy7, one option

per line. For instane here is the on�guration �le for testing the safe relaxations of x86, x86-safe.onf.

#safe x86 onf file

-arh X86

#Generate tests on four proessors or less

-npros 4

#From yles of size at most six

-size 6

#With names safe000, safe0001,...

-name safe

#List of safe relaxations

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FenesWR FenedWR

Observe that the syntax of andidate relaxations allows one shortut: the wildard * stands for W and R.

Thus PodR* gets expanded to the two andidate relaxations PodRR and PodRW.

We get safe tests by issuing the following ommand, preferably in a spei� diretory, say safe.

% diy7 -onf x86-safe.onf

Generator produed 38 tests

Relaxations tested: {}

Here are the on�guration �les for on�rming that R� and PodWR are relaxed, x86-rfi.onf and x86-podwr.onf.

#rfi x86 onf file

-arh X86

-npros 4

-size 6

-name rfi

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FenesWR FenedWR

-relax Rfi

#podrw x86 onf file

-arh X86

-npros 4

-size 6

-name podwr

-safe Fre

-relax PodWR

Notie that we used the omplete safe list in x86-rfi.onf and a redued list in x86-podwr.onf. Tests

are to be generated in spei� diretories.

37

% d rfi

% diy7 -onf x86-rfi.onf

Generator produed 11 tests

Relaxations tested: {Rfi}

% d ../podwr

% diy7 -onf x86-podwr.onf

Generator produed 2 tests

Relaxations tested: {PodWR}

% d ..

Now, let us run all tests at one, with the parameters of mahine saumur (4 physial ores with hyper-

threading):

% litmus7 -mah saumur rfi/�all > rfi/saumur.rfi.00

% litmus7 -mah saumur podwr/�all > podwr/saumur.podwr.00

% litmus7 -mah saumur safe/�all > safe/saumur.safe.00

If your mahine has 2 ores only, try litmus -a 2 -limit true. . .

We now look for the tests that have validated their ondition in the result �les of litmus7. A simple tool,

readRelax7, does the job:

% readRelax7 rfi/saumur.rfi.00 podwr/saumur.podwr.00 safe/saumur.safe.00

.

.

.

** Relaxation summary **

{Rfi} With {Rfe, Fre, Wse, PodRW, PodRR} {Rfe, Fre, PodRR}\

{Fre, Wse, PodWW, PodRR} {Fre, PosWW, PodRR, MFenedWR}\

{Fre, PodWW, PodRR, MFenedWR} {Fre, PodRR} {Fre, PodRR, MFenedWR}

{PodWR} With {Fre}

The tool readRelax7 �rst lists the result of all tests (whih is omitted above), and then dumps a summary of

the relaxations it found. The sets of the andidate relaxations that need to be safe for the tests to indeed

reveal a relaxed andidate relaxation are also given. Here, R� and PodWR are on�rmed to be relaxed, while

no andidate relaxation in the safe set is found to be relaxed. Had it been the ase, a line {} With {...}

would have ourred in the relaxation summary. The safe tests need to be run a lot of times, to inrease our

on�dene in the safe set.

7 Additional relaxations

We introdue some additional andidate relaxations that are spei� to the Power arhiteture. We shall not

detail here our experiments on Power mahines. See our experiene report http://diy.inria.fr/phat/ for

more details.

7.1 Intra-proessor dependenies

In a very relaxed arhiteture suh as Power, intra-proessor dependenies beomes signi�ant. Roughly,

intra-proessor dependenies fall into two ategories:

Data dependenies our when a memory aess instrution reads a register whose ontents depends upon

a previous (in program order) load. In diy7 we speify suh a dependeny as:

Dp(s|d)(R|W)

38

where, as usual, s (resp. d) indiates that the soure and target events are to the same (resp. di�erent)

loation(s); and R (resp. W) indiates that the target event is a read (resp. a write). As a matter of

fat, we do not need to speify the diretion of the soure event, sine it always is a read.

Finally, one may ontrol the nature of the dependeny: address dependeny (DpAddr(s|d)(R|W) or

data dependeny (DpData(s|d)W).

Control dependenies our when the exeution of a memory aess is onditioned by the ontents of a

previous load. Their syntax is similar to the one of Dp relaxations, with a Ctrl tag:

Ctrl(s|d)(R|W)

This default syntax expands to ontrol dependenies as guaranteed by the Power doumentation. For

read to write, onditioning exeution is enough (expanded syntax, DpCtrl(s|d)W). But for read to

read, an extra instrution, isyn, is needed (expanded syntax DpCtrlIsyn(s|d)R, see below). The

syntax DpCtrl(s|d)R also exists, it expresses the onditional exeution of a load instrution and does

not reate ordering.

ARM has similar andidate relaxations, Isyn being replaed by ISB.

In the produed ode, diy7 expresses a data dependeny by a false dependeny (or dummy dependeny) that

operates on the address of the target memory aess. For instane:

% diyone7 DpdW Rfe DpdW Rfe

PPC A

"DpAddrdW Rfe DpAddrdW Rfe"

{

0:r2=y; 0:r5=x;

1:r2=x; 1:r5=y;

}

P0 | P1 ;

lwz r1,0(r2) | lwz r1,0(r2) ;

xor r3,r1,r1 | xor r3,r1,r1 ;

li r4,1 | li r4,1 ;

stwx r4,r3,r5 | stwx r4,r3,r5 ;

exists (0:r1=1 /\ 1:r1=1)

On P0, the e�etive address of the indexed store stwx r4,r3,r5 depends on the ontents of the index

register r3, whih itself depends on the ontents of r1. The dependeny is a �false� one, sine the ontents

of r3 always is zero, regardless of the ontents of r1. One may observe that DpdW is hanged into DpAddrdW

in the omment �eld of the test. As a matter of fat, DpdW is a maro for the address dependeny DpAddrW.

We ould have spei�ed data dependeny instead:

% diyone7 DpDatadW Rfe DpAddrdW Rfe

PPC A

"DpDatadW Rfe DpAddrdW Rfe"

{

0:r2=y; 0:r4=x;

1:r2=x; 1:r5=y;

}

P0 | P1 ;

lwz r1,0(r2) | lwz r1,0(r2) ;

xor r3,r1,r1 | xor r3,r1,r1 ;

addi r3,r3,1 | li r4,1 ;

stw r3,0(r4) | stwx r4,r3,r5 ;

39

exists

(0:r1=1 /\ 1:r1=1)

On P0, the value stored by the last (store) instrution stw r3,0(r4) is now omputed from the value read

by the �rst (load) instrution lwz r1,0(r2). Again, this is a �false� dependeny.

A ontrol dependeny is implemented by the means of an useless ompare and branh sequene, plus the

isyn instrution when the target event is a load. For instane

% diyone7 CtrldR Fre SyndWW Rfe

PPC A

"DpCtrlIsyndR Fre SyndWW Rfe"

{

0:r2=y; 0:r4=x;

1:r2=x; 1:r4=y;

}

P0 | P1 ;

lwz r1,0(r2) | li r1,1 ;

mpw r1,r1 | stw r1,0(r2) ;

beq LC00 | syn ;

LC00: | li r3,1 ;

isyn | stw r3,0(r4) ;

lwz r3,0(r4) | ;

exists

(0:r1=1 /\ 0:r3=0)

Also notie that CtrldR is interpreted as DpCtrlIsynR in the omment �eld of the test.

Of ourse, in all ases, we assume that �false� dependenies are not �optimised out� by the assembler or

the hardware.

7.2 Composite relaxations and umulativity

Users may speify a small sequene of single andidate relaxations as behaving as a single andidate relaxation

to diy7. The syntax is:

[r1, r2, . . . ℄

The main usage of the feature is to speify umulativity andidate relaxations, that is, the sequene of Rfe

and of a fene andidate relaxation (A-umulativity), the sequene of a fene andidate relaxation and of Rfe

(B-umulativity), or both (AB-umulativity).

Cumulativity andidate relaxations are best expressed by the following syntatial shortuts: let r be

a fene andidate relaxation, then ACr stands for [Rfe,r℄, BCr stands for [r,Rfe℄, while ABCr stands

for [Rfe,r,Rfe℄,
Hene, a simple way to generate iriw-like (see Se. 5.3) litmus tests with lwsyn is as follows:

% diy7 -name iriw-lwsyn -npros 8 -size 8 -relax ACLwSyndRR -safe Fre

Generator produed 3 tests

Relaxations tested: {ACLwSyndRR}

where we have for instane:

% at iriw-lwsyn001.litmus

PPC iriw-lwsyn001

"Fre Rfe LwSyndRR Fre Rfe LwSyndRR Fre Rfe LwSyndRR"

Cyle=Fre Rfe LwSyndRR Fre Rfe LwSyndRR Fre Rfe LwSyndRR

Relax=ACLwSyndRR

40

Safe=Fre

{

0:r2=z; 0:r4=x; 1:r2=x;

2:r2=x; 2:r4=y; 3:r2=y;

4:r2=y; 4:r4=z; 5:r2=z;

}

P0 | P1 | P2 | P3 | P4 | P5 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwsyn | stw r1,0(r2) | lwsyn | stw r1,0(r2) | lwsyn | stw r1,0(r2) ;

lwz r3,0(r4) | | lwz r3,0(r4) | | lwz r3,0(r4) | ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0 /\ 4:r1=1 /\ 4:r3=0)

7.3 Detour andidate relaxations

Detours ombine a Pos andidate relaxation and a sequene of two external ommuniation andidate relax-

ations. More preisely detours are some onstrained Pos andidate relaxations: the soure and target events

must be related by a sequene of two ommuniation andidate relaxations, whose target and soure are a

ommon event whose proessor is new.

diy7 syntax Soure Target Detour

DetourR R R Fre; Rfe

DetourW W R Wse; Rfe

DetourRW R W Fre;Wse

DetourWW W W Wse;Wse

DetourRR and DetourWR are aepted as synonyms for DetourR and DetourW respetively.

Graphially, we have:

DetourR

a: Rx=0

b: Rx=1

: Wx=1

po

fr

rf

DetourW

a: Wx=1

b: Rx=2

: Wx=2

po

o

rf

DetourRW

a: Rx=0

b: Wx=2

: Wx=1

po

fr

o

DetourWW

a: Wx=1

b: Wx=3

: Wx=2

po

o

o

Finally notie that �internal� detours need no speial treatement as they an be expressed by the sequenes

�Fri; R��, �Wsi;R��, et.

41

8 Test variations with diyross7

The tool diyross7 has an interfae similar to diyone7, exept it aepts list of andidate relaxations where

diyone7 aepts single andidate relaxations. The new tool produes the test resulting by �ross produing�

the lists. For instane, one an generate all variations on the IRIW test (see Se. 5.3) that involve data

dependenies and the lightweight barrier lwsyn as follows:

% diyross7 -arh PPC -name IRIW Rfe DpdR,LwSyndRR Fre Rfe DpdR,LwSyndRR Fre

Generator produed 3 tests

% ls

�all IRIW+addrs.litmus IRIW+lwsyn+addr.litmus IRIW+lwsyns.litmus

diyross7 outputs the index �le �all that lists the test soure �les, and three tests, with names we believe

to be self-explanatory:

% at IRIW+lwsyn+addr.litmus

PPC IRIW+lwsyn+addr

"Rfe LwSyndRR Fre Rfe DpAddrdR Fre"

Cyle=Rfe LwSyndRR Fre Rfe DpAddrdR Fre

{

0:r2=y;

1:r2=y; 1:r4=x;

2:r2=x;

3:r2=x; 3:r5=y;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) ;

stw r1,0(r2) | lwsyn | stw r1,0(r2) | xor r3,r1,r1 ;

| lwz r3,0(r4) | | lwzx r4,r3,r5 ;

exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r4=0)

Users may use the speial keywords allRR, allRW, allWR and allWW to speify the set of all existing

program order andidate relaxations between the spei�ed �R� or �W�. For instane, we get the omplete

variations on IRIW by:

% diyross7 -arh PPC -name IRIW Rfe allRR Fre Rfe allRR Fre

Generator produed 28 tests

% ls

�all

IRIW.litmus

IRIW+addr+po.litmus

IRIW+lwsyn+addr.litmus

...

IRIW+isyns.litmus

9 Identifying oherene orders with observers

We �rst produe the �four writes� test 2+2W for Power:

% diyone7 -name 2+2W -arh PPC PodWW Wse PodWW Wse

% at 2+2W.litmus

PPC 2+2W

"PodWW Wse PodWW Wse"

42

{ 0:r2=x; 0:r4=y; 1:r2=y; 1:r4=x; }

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

exists (x=2 /\ y=2)

Test 2+2W is the Power version of the x86 test x86-2+2W of Se. 5.3. In that setion, we argued that the

�nal ondition exists (x=2 /\ y=2) su�es to identify the oherene orders 0, 1, 2 for loations x and y.

As a onsequene, a positive �nal ondition reveals the ourrene of the spei�ed yle: Wse PodWW Wse

PodWW.

9.1 Simple observers

Observers provide an alternative, perhaps more intuitive, means to identify oherene orders: an observer

simply is an additional thread that performs several loads from the same loation in sequene. Here, loading

value 1 and then value 2 from loation x identi�es the oherene order 0, 1, 2. The ommand line swith

-obs fore ommands the prodution of observers (test 2+2WObs):

% diyone7 -name 2+2WObs -obs fore -obstype straight -arh PPC PodWW Wse PodWW Wse

% at 2+2WObs.litmus

PPC 2+2WObs

"PodWW Wse PodWW Wse"

{ 0:r2=x; 1:r2=y; 2:r2=x; 2:r4=y; 3:r2=y; 3:r4=x; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | lwz r1,0(r2) | li r1,2 | li r1,2 ;

lwz r3,0(r2) | lwz r3,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

| | li r3,1 | li r3,1 ;

| | stw r3,0(r4) | stw r3,0(r4) ;

exists (0:r1=1 /\ 0:r3=2 /\ 1:r1=1 /\ 1:r3=2)

Thread P0 observes loation x, while thread P1 observes loation y. With respet to 2+2W, �nal ondition

has hanged, the diret observation of the �nal ontents of loations x and y being replaed by two suessive

observations of the ontents of x and y.

It should �rst be notied that the reasoning above assumes that having the same thread to read 1 from

say x and then 2 implies that 1 takes plae before 2 in the oherene order of x. This may not be the ase

in general � although it holds for Power. Moreover, running 2+2W and 2+2WObs yields ontrasted results.

While a positive onlusion is immediate for 2+2W, we were not able to reah a similar onlusion for 2+2WObs.

As a matter of fat, 2+2WObs yielding Ok stems from the still-to-be-observed oinidene of several events:

both observers threads must run at the right pae to observe the hange from 1 to 2, while the yle must
indeed our.

9.2 More observers

9.2.1 Fenes and loops in observers

A simple observer onsisting of loads performed in sequene is a straight observer. We de�ne two additional

sorts of observers: fened observers, where loads are separated by the strongest fene available, and loop

observers, whih poll on loation ontents hange. Those are seleted by the homonymous tags given as

arguments to the ommand line swith -obstype. For instane, we get the test 2+2WObsFened by:

% diyone7 -name 2+2WObsFened -obs fore -obstype fened -arh PPC PodWW Wse PodWW Wse

% at 2+2WObsFened.litmus

43

PPC 2+2WObsFened

"PodWW Wse PodWW Wse"

{ 0:r2=x; 1:r2=y; 2:r2=x; 2:r4=y; 3:r2=y; 3:r4=x; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | lwz r1,0(r2) | li r1,2 | li r1,2 ;

syn | syn | stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) | li r3,1 | li r3,1 ;

| | stw r3,0(r4) | stw r3,0(r4) ;

exists (0:r1=1 /\ 0:r3=2 /\ 1:r1=1 /\ 1:r3=2)

Invoking diyone7 as �diyone -obs fore -obstype loop ...� yields the additional test 2+2WObsLoop. The

html version of this doument provides details.

9.2.2 Loal observers

With loal observers, oherene order is observed by the test threads. This implies hanging the tests, and

some are must be exerised when interpreting results.

The idea is as follows: when two threads are onneted by a Wse andidate relaxation, meaning that the

�rst thread ends by writing v to some loation ℓ and that the seond threads starts by writing v + 1 to the
same loation ℓ, we add an observing read of loation ℓ at the end of the �rst thread. Then, reading v + 1
means that the write by the �rst thread preedes the write by the seond thread in ℓ oherene order. More

onretely, we instrut diy7 generators to emit suh loal observers with option -obs loal:

% diyone7 -name 2+2WLoal -obs loal -obstype straight -arh PPC PodWW Wse PodWW Wse

% at 2+2WLoal.litmus

PPC 2+2WLoal

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

lwz r5,0(r4) | lwz r5,0(r4) ;

exists

(0:r5=2 /\ 1:r5=2)

With respet to 2+2W, �nal ondition has hanged, the diret observation of the �nal ontents of loations y

and x being replaed loal observation of y by thread 0 and loal observation of x by thread 1.

Based for instane on the test exeution witness, whose only SC-violation yle is the same as as for

2+2W,

44

a: W[x℄=2

b: W[y℄=1

f: R[x℄=2

: R[y℄=2

d: W[y℄=2

e: W[x℄=1

po:0

rf

rf

po:0

ws

rf po:1rf

ws

po:1

one may argue that tests 2+2W and 2+2WLoal are equivalent, in the sense that both are allowed or both

are forbidden by a model or mahine.

Loal observers an also be fened or looping. For instane, one produes 2+2WLoalFened, the fened

loal observer version of 2+2W as follows:

% diyone7 -name 2+2WLoalFened -obs loal -obstype fened -arh PPC PodWW Wse PodWW Wse

% at 2+2WLoalFened.litmus

PPC 2+2WLoalFened

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

syn | syn ;

lwz r5,0(r4) | lwz r5,0(r4) ;

exists

(0:r5=2 /\ 1:r5=2)

While one produes 2+2WLoalLoop, the looping loal observer version of 2+2W as follows:

% diyone7 -name 2+2WLoalLoop -obs loal -obstype loop -arh PPC PodWW Wse PodWW Wse

% at 2+2WLoalLoop.litmus

PPC 2+2WLoalLoop

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

li r6,200 | li r6,200 ;

L00: | L02: ;

45

lwz r5,0(r4) | lwz r5,0(r4) ;

mpwi r5,1 | mpwi r5,1 ;

bne L01 | bne L03 ;

addi r6,r6,-1 | addi r6,r6,-1 ;

mpwi r6,0 | mpwi r6,0 ;

bne L00 | bne L02 ;

L01: | L03: ;

exists (0:r5=2 /\ 1:r5=2)

In the ode above, observing loads are attempted at most 200 time or until a value di�erent from 1 is read.

9.2.3 Performane of observers

As an indiation of the performane of the various sorts of observers, the following table summarises a litmus7

experiment performed on a 8-ores 4-ways SMT Power7 mahine mahine.

2+2W 2+2WObs 2+2WObsFened 2+2WObsLoop 2+2WLoal 2+2WLoalFened 2+2WLoalLoop

Positive 2.2M/160M 0/80M 326/80M 25k/80M 2/160M 34k/160M 111k/160M

The row �Positive� shows the number of observed positive outomes/total number of outomes produed.

For instane, in the ase of 2+2W, we observed the positive outome x=2 /\ y=2 more than 2 millions

times out of a total of 160 millions outomes. As a onlusion, all tehniques ahieve deent results, exept

straight observers.

9.3 Three stores or more

In test 2+2W the oherene orders sequene two writes. If there are three writes or more to the same

loation, it is no longer possible to identify a oherene order by observing the �nal ontents of the memory

loation involved. In other words, observers are mandatory.

The argument to the -obs swith ommands the prodution of observers. It an take four values:

aept Produe observers when absolutely needed. More preisely, given memory loation x, no equality

on x appears in the �nal ondition for zero or one write to x, one suh appears for two writes, and

observers are produed for three writes or more.

avoid Never produe observers, i.e. fail when there are three writes to the same loation.

fore Produe observers for two writes or more.

loal Always produe loal observers.

With diyone7, one easily build a three writes test as for instane the following W5:

% diyone7 -obs aept -obstype fened -arh PPC -name W5 Wse Wse PodWW Wse PodWW

% at W5.litmus

PPC W5

"Wse Wse PodWW Wse PodWW"

{ 0:r2=y; 1:r2=y; 1:r4=x; 2:r2=x; 2:r4=y; 3:r2=y; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,3 | li r1,2 | li r1,2 ;

syn | stw r1,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | li r3,1 | li r3,1 | ;

syn | stw r3,0(r4) | stw r3,0(r4) | ;

lwz r4,0(r2) | | | ;

exists (x=2 /\ 0:r1=1 /\ 0:r3=2 /\ 0:r4=3)

46

As apparent from the ode above, we have a fened observer thread on y (P0), while the �nal state of x is

observed diretly (x=2). The ommand line swith -obs fore would yield two observers, while -obs avoid

would lead to failure.

With ommand line swith -obs loal we get three loal observations of oherene, whih su�e to

reonstrut the omplete oherene orders:

% diyone7 -obs loal -obstype fened -arh PPC -name W5Loal Wse Wse PodWW Wse PodWW

hi% at W5Loal.litmus

PPC W5Loal

"Wse Wse PodWW Wse PodWW"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

2:r2=x;

}

P0 | P1 | P2 ;

li r1,3 | li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 | syn ;

stw r3,0(r4) | stw r3,0(r4) | lwz r3,0(r2) ;

syn | syn | ;

lwz r5,0(r4) | lwz r5,0(r4) | ;

exists (0:r5=2 /\ 1:r5=2 /\ 2:r3=3)

10 Command usage

The diy7 suite onsists in four main tools:

diyone7 generates one litmus test from the spei�ation of a violation of the sequential onsisteny memory

model as a yle � see Se. 5.2.

diyross7 generates variations of diyone7 style tests � see Se. 8.

diy7 generates several tests, aimed at on�rming that andidate relaxations are relaxed or safe�see Se. 6.

readRelax7 Extrat relevant information from the results of tests�see Se. 6.2.

10.1 A note on test names

We have designed a simple naming sheme for tests. A normalised test name deomposes �rst as a family

name, and seond as a desription of program-order (or internal) andidate relaxations.

10.1.1 Family names

Cyles (and thus tests) are �rst grouped by families. Family names desribe test struture, based upon exter-

nal ommuniation andidates relaxations. More spei�ally, external ommuniation andidates relaxations

su�e to settle the diretions (W or R) of �rst and last events of threads, onsidering the ase when those two

events are the same. For instane, onsider the yle �PodWW Rfe PodRR Fre�: there are two threads in

the orresponding test (as there are two external ommuniation andidate relaxations), one thread starts

and ends with a write (written WW), while the other thread starts and ends with a read (written RR). The

family name is thus WW+RR, (or RR+WW, but we hoose the former). For referene, a normalised family name is

the minimal amongst the representations of a given yle, following the lexial order derived from the order

W < WW < RR < RW < WR < R.

47

The most ommon families have niknames, whih are de�ned by this doument

4

. For instane, onsider

the test whose yle is �PodWR Fre PodWR Fre�. The family name is WR+WR, as this is a two-thread test,

both threads starting with a write and ending with a read. The nikname for this family is, as we already

know, SB (store-bu�ering). Here is the list of niknames and family names for two thread tests:

2+2W WW+WW PodWW Wse PodWW Wse

LB RW+RW PodRW Rfe PodRW Rfe

MP WW+RR PodWW Rfe PodRR Fre

R WW+WR PodWW Wse PodWR Fre

S WW+RW PodWW Rfe PodRW Wse

SB WR+WR PodWR Fre PodWR Fre

Isolated writes (and reads) originate from the ombinations of ommuniation relaxations, for instane

[Fre,Rfe℄. They appear as �W� (and R) in family names. For instane, �Rfe PodRR Fre Rfe PodRR Fre�

ontains two suh isolated writes, its name is thus W+RR+W+RR and its nikname is, as we know, IRIW

(Independent reads of independent writes). The test �Rfe PodRW Rfe PodRR Fre� ontains one isolated

write, as apparent from this diagram:

WRC

a: Wx=1 b: Rx=1

: Wy=1

d: Ry=1

e: Rx=0

rf

po

rf

po

fr

rf

The family name is thus W+RW+RR and the nikname is WRC (Write to Read Causality).

10.1.2 Desriptive names for variants

Every family has a prototype, homonymous test where every thread ode onsists in one (for W or R) or

two memory aesses to di�erent loations (for WW, WR et.). For instane, the MP test is derived from the

yle �PodWW Rfe PodRR Fre�. Variants are desribed by tags that illustrates the various program-order

relaxations: they appear after the family name, still with �+� as a separation. For instane the test derived

from �LwSyndWW Rfe DpAddrdR Fre� is named MP+lwsyn+addr.

When all threads have the same tag tag, the test name is abbreviated as Family+tags. For instane,

the test MP+lwsyn+lwsyn (�LwSyndWW Rfe LwSyndRR Fre�) is in fat MP+lwsyns. Additionally,

the tag pos (all po's) is omitted, in order to yield family names for the prototype tests � f. MP whose

name would have been MP+pos otherwise.

For the sake of terseness, tags do not desribe program-order relaxations ompletely. For instane both

DpAddrdR and DpAddrdW (address dependeny to read and write, respetively) have the same tag, addr.

It does not harm for simple tests, as the missing diretion an be inferred from the family name. Consider

for instane MP+lwsyn+addr and LB+lwsyn+addr.

4

http://www.l.am.a.uk/~pes20/pp-supplemental/test6.pdf

48

MP+lwsyn+addr

a: Wx=1

b: Wy=1

: Ry=1

d: Rx=0

lwsyn

rf

fr

addr

rf

LB+lwsyn+addr

a: Rx=1

b: Wy=1

: Ry=1

d: Wx=1

lwsyn

rf

rf

addr

The naming sheme extends to yles with onseutive program-order relaxations, by separating tags

with �-� when they follow one another: for instane �LwSyndWW Rfe DpAddrdR PodRR Fre� is named

MP+lwsyn+addr-po. Unfortunately, the urrent naming sheme falls short in supplying non-ambiguous

names to all tests. For instane, �LwSyndWWRfe DpAddrdW PodWR Fre� is also namedMP+lwsyn+addr-

po. In that situation tools will either fail or silently add a numeri su�x, depending on the boolean -addnum

option.

% diyross7 -addnum false LwSyndWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Fatal error: Dupliate name MP+lwsyn+addr-po

% diyross7 -addnum true LwSyndWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Generator produed 2 tests

% at �all

diyross7 -addnum true LwSyndWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

MP+lwsyn+addr-po.litmus

MP+lwsyn+addr-po001.litmus

As a result, we get the two tests: MP+lwsyn+addr-po and MP+lwsyn+addr-po001.

MP+lwsyn+addr-po

a: Wx=1

b: Wy=1

: Ry=1

d: Rz=0

e: Rx=0

lwsyn

rf

addr

po

fr

rf

rf

MP+lwsyn+addr-po001

a: Wx=1

b: Wy=1

: Ry=1

d: Wz=1

e: Rx=0

lwsyn

rf

addr

po

fr

rf

Future versions of diy7 may solve this issue in a more satisfying manner. At the moment, users are

advised not to rely too muh on the automati naming sheme. Users may name tests in a non-ambiguous

fashion by (1) speifying an expliit family name (-name name) and (2) seleting the numeri sheme (-num

true):

% diyross7 -name MP+X -num true LwSyndWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Generator produed 2 tests

The diyross7 generator outputs the same tests as above, with names MP+X000 and MP+X001.

10.2 Common options

All test generators aept the following doumented ommand-line options:

-v Be verbose, repeat to inrease verbosity.

-version Show version number and exit.

49

-arh (X86|PPC|ARM) Set arhiteture. Default is PPC. ARM support is experimental.

-o <dest> Rediret output to <dest>. This option applies when tools generate a set of tests and an index

�le �all, .i.e. in all situations exept for diyone7 simplest operating mode.

If argument <dest> is an arhive (extension .tar) or a ompressed arhive (extension .tgz), the tool

builds an arhive. Otherwise, <dest> is interpreted as the name of an existing diretory. Default is

�.�, that is tool output goes into the urrent diretory.

-obs (aept|avoid|fore|loal) Management of observers, default is avoid. See Se. 9.3.

-obstype (fened|loop|straight) Style of observers, default is fened. See Se. 9.2.

-ond (yle|uni|observe) Control �nal ondition of tests, default is yle. In mode yle, the �nal

ondition identi�es exeutions that orrespond to the generating yle. In mode uniond, the �nal

ondition identi�es exeutions that are valid w.r.t. the unipro model (see Se. 12.2). In mode observe

there is no �nal ondition: the litmus7 and herd7 tools will simply list the �nal values of loations.

-optond Optimise onditions by disregarding the values of loads that are neither the target of Rf, nor the

soure of Fr. This is the default.

-nooptond Do not optimise onditions.

-optoherene Optimise onditions assuming that the tested system (at least) follows the unipro model

(see Se. 12.2).

-nooptoherene Do not optimise onditions assuming that the tested system (at least) follows the unipro

model. This is the default.

-neg <bool> Negate �nal ondition, default is false.

- <bool> Avoid equivalent yles. Default is true. Setting - true is intended for debug.

The naming of tests is ontrolled by the following options:

-name <name> Use name for naming tests, the exat onsequenes depend on the generator. By default the

generator has no name available.

-num <bool> Use numeri names, i.e. from a base name <base> the generator will name tests as <base>000,

<base>001 et. The default depends upon the generator.

-addnum <bool> If true, when faed with tests whose name <name> has already been given, use names

<name>001, <name>002, et. Otherwise fail in the same situation. The default depends upon the

generator.

-fmt <n> Size of numerial su�xes, default is 3.

10.3 Usage of diyone7

The tool diyone7 has two operating modes. The seleted mode depends on the presene of ommand-line

arguments,

In the �rst operating mode, diyone7 takes a non-empty list of andidate relaxations as arguments and

outputs a litmus test. Note that diyone7 may fail to produe the test, with a message that brie�y details the

failure.

% diyone7 Rfe Rfe PodRR

Test a [Rfe Rfe PodRR℄ failed:

Impossible diretion PodRR Rfe

50

In this mode, -name <name> sets the name of the test to <name> and output it into �le <name>.litmus.

If absent, the test name is A and output goes to standard output.

Otherwise, i.e. when there are no ommand-line arguments, diyone7 reads the standard input and

generates the tests desribed by the lines it reads. Eah line starts with a test name name, followed by �:�,

followed by a list of andidate relaxationsRS. Then, diyone7 ats as if invoked as diyone opts -name name RS.

The tool diyone7 aepts the following doumented option:

-norm Normalise tests and give them normalised names. In the �rst operating mode (when a yle is

expliitly given) the test will be named with a family name and a desriptive name. In the seond

operating mode, numeri names are used, base being either given expliitly (with option -name <base>)

or being a normalised family name.

10.4 Usage of diyross7

diyross7 produes several tests by �ross produing� lists of andidate relaxations given as arguments, see

Se 8. diyross7 also produes an index �le �all that lists all produed litmus soure �les.

If option -name <name> is given, it sets the family name of generated tests, otherwise standard family

names are used (f. Se. 10.1). By default desriptive names are used (i.e. -num false) and diyross7 will

fail if two di�erent tests have the same name (i.e. -addnum false):

% diyross7 PodWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Fatal error: Dupliate name MP+po+addr-po

Should this happen users an resort either to numeri names,

%diyross7 -num true PodWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Generator produed 2 tests

on% ls

�all MP000.litmus MP001.litmus

or to disambiguating numeri su�xes.

%diyross7 -addnum true PodWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Generator produed 2 tests

on% ls

�all MP+po+addr-po001.litmus MP+po+addr-po.litmus

10.5 Usage of diy7

As diyross7, diy7 produe several �les, hene naming issues are ritial. By default, diy7 uses family names

and the numeri naming sheme (-num true). Users an speify a family name family for all tests with -name

family , or attempt using the desriptive names of Se 10.1 with -num false. Moreover, diy7 produes an

index �le �all that lists the �le names of all tests produed.

The tool diy7 also aepts the following, additional, doumented options.

-onf <file> Read on�guration �le <file>. A on�guration �le onsists in a list of options, one option

per line. Lines introdued by # are omments and are thus ignored.

-size <n> Set the maximal size of yles. Default is 6.

-exat Produe yles of size exatly <n>, in plae of size up to <n>.

-npros <n> Rejet tests with more than <n> threads. Default is 4.

-epros Produe tests with exatly <n> threads, where <n> is set above.

51

-ins <n> Rejet tests as soon as the ode of one thread originates from <n> edges or more. Default is 4.

-relax <relax-list> Set relax list. Default is empty. The syntax of <relax-list> is a omma (or spae)

separated list of andidate relaxations.

-mix <bool> Mix the elements of the relax list (see below), default false.

-maxrelax <n> In mix mode, upper bound on the number of di�erent andidate relaxations tested together.

Default is 100

-safe <relax-list> Set safe list. Default is empty.

-mode (ritial|s|free|uni) Control generation of yles, default s. Those tags ommand the ati-

vation of some onstraints over yle generation, see below.

-umul <bool> Permit impliit umulativity, i.e. authorise building up the sequene Rfe followed by a

fene, or the reverse. Default is true.

The relax and safe lists ommand the generation of yles as follows:

1. When the relax list is empty, yles are built from the andidate relaxations of the safe list.

2. When the relax list is of size 1, yles are built from its single element r and from the elements of the

safe list. Additionally, the yle produed ontains r at least one.

3. When the relax list is of size n, with n > 1, the behaviour of diy7 depends on the mix mode:

(a) By default (-mix false), diy7 generates n independent sets of yles, eah set being built with

one relaxation from the relax list and all the relaxations in the safe list. In other words, diy7 on

a relax list of size n behaves similarly to n runs of diy7 on eah andidate relaxation in the list.

(b) Otherwise (-mix true), diy7 generates yles that ontains at least one element from the relax list,

inluding some yles that ontain di�erent relaxations from the relax list. The yles will ontain

at most m di�erent elements from the relax list, where m is spei�ed with option �-maxrelaxm�.

Generally speaking, diy7 generates �some� yles and does not generate �all� yles (up to a ertain

size e.g.). In (default) s mode, diy7 performs some optimisation, most of whih we leave unspei�ed. As

an exeption to this non-spei�ation, diy7 in s (default) mode is guaranteed not to generate redundant

elementary ommuniation relaxation in the following sense: let us all Com the union of Ws, Rf and Fr

(the e|i spei�ation is irrelevant here). Ws being transitive and by de�nition of Fr, one easily shows that

the transitive losure Com+ of Com is the union of Com plus [Ws,Rf℄ (Ws followed by Rf) plus [Fr,Rf℄.

As a onsequene, maximal subsequenes of ommuniation relaxations in diy7 yles are limited to single

relaxations (i.e. Ws, Rf and Fr) and to the above mentioned two sequenes (i.e. [Ws,Rf℄ and [Fr,Rf℄). For

instane, [Ws,Ws℄ and [Fr,Ws℄ should never appear in diy7 generated yles. However, suh subsequenes

an be generated on an individual basis with diyone7, see the example of W5 in Se 9.3.

In ritial mode (-mode ritial), yles are stritly spei�ed as follows:

1. Communiation andidate relaxations sequenes are limited to Rf,Fr,Ws,[Ws,Rf℄ and [Fr,Rf℄, as in s

mode.

2. No two internal

5

andidate relaxations follow one another.

3. If the option -umul false is spei�ed, diy7 will not onstrut the sequene of Rfe followed by a

fene (or B-umulativity) andidate relaxation or of a fene (or A-umulativity) andidate relaxation

followed by Rfe.

4. Cyles that aess one single memory loation are rejeted.

5

That is, the soure and target aesses are by the same proessor.

52

5. None of the rules above applies to the internal sequenes of omposite andidate relaxations. For

instane, if [R�,PodRR℄ is given as a andidate relaxation, the sequene �R�,PodRR� appears in yles.

The yles desribed above are the ritial yles of [5℄.

In free mode (-mode free), yles are stritly spei�ed as follows:

1. Communiation andidate relaxations sequenes are limited to Rf,Fr,Ws,[Ws,Rf℄ and [Fr,Rf℄. However,

arbitrary sequenes of ommuniation andidates are aepted when they are internal and external or

external and internal.

2. Cyles that aess one single memory loation are rejeted.

Finally, the uni mode enfores the following onstraints on yles:

1. Sequenes of ommuniation andidate relaxations are restrited in the same manner as for free mode

(see above).

2. Sequenes of Po andidate relaxation are rejeted.

10.6 Usage of readRelax7

readRelax7 is a simple tool to extrat relevant information out of litmus7 run logs of tests produed by the

diy7 generator. For a given run of a given litmus test, the relevant information is:

• Whether the test yielded Ok or not,

• An optional andidate relaxation, whih is the one given as argument to diy7 option -relax at test

build time, or none.

• The safe list relevant to the given test, i.e. the safe andidate relaxations that appear in the tested

yle.

See Se. 6.2 for an example.

The tool readRelax7 takes �le names as arguments. If no argument is present, it reads a list of �le names

on standard input, one name per line.

11 Additional tools: extrating yles and lassi�ation

When non-standard family names or numeri names are used, it proves onvenient to rename tests with the

standard naming sheme. We provide two tools to do so: myle7 that extrats yles from litmus soure

�les and lassify7 that normalises and renames yles.

For instane, one an use diy7 to generate all simple, ritial, tests up to three threads for X86 with the

following on�guration �le X.onf

-arh X86

-name X

-npros 3

-size 6

-safe Pod**,Fre,Rfe,Wse

-mode ritial

% diy7 -onf X.onf

Generator produed 23 tests

% ls

�all X003.litmus X007.litmus X011.litmus X015.litmus X019.litmus X.onf

X000.litmus X004.litmus X008.litmus X012.litmus X016.litmus X020.litmus

X001.litmus X005.litmus X009.litmus X013.litmus X017.litmus X021.litmus

X002.litmus X006.litmus X010.litmus X014.litmus X018.litmus X022.litmus

53

Cyles are extrated with myle7, whih takes the index �le �all as argument:

% myles7 �all

X000: Wse PodWR Fre PodWR Fre PodWW

X001: Rfe PodRR Fre PodWR Fre PodWW

X002: Wse PodWR Fre PodWW

X003: Wse PodWW Wse PodWR Fre PodWW

X004: Rfe PodRW Wse PodWR Fre PodWW

X005: Rfe PodRR Fre PodWW

X006: Wse PodWW Rfe PodRR Fre PodWW

X007: Rfe PodRW Rfe PodRR Fre PodWW

X008: Wse Rfe PodRR Fre PodWW

X009: Wse PodWW Wse PodWW

...

The output of myle7 an be piped into lassify7 for family lassi�ation:

% myles7 �all | lassify7 -arh X86

2+2W

X009 -> 2+2W : PodWW Wse PodWW Wse

3.2W

X010 -> 3.2W : PodWW Wse PodWW Wse PodWW Wse

3.LB

X020 -> 3.LB : PodRW Rfe PodRW Rfe PodRW Rfe

3.SB

X016 -> 3.SB : PodWR Fre PodWR Fre PodWR Fre

ISA2

X007 -> ISA2 : PodWW Rfe PodRW Rfe PodRR Fre

LB

X019 -> LB : PodRW Rfe PodRW Rfe

MP

X005 -> MP : PodWW Rfe PodRR Fre

...

Notie that lassify7 aepts the arh option, as it needs to parse yles.

Finally, one an normalise tests, using normalised names by piping myle7 output into diyone7 with

options -norm -num false:

% mkdir sr

% myles7 �all | diyone7 -arh X86 -norm -num false -o sr

Generator produed 23 tests

% ls sr

2+2W.litmus �all R.litmus WRC.litmus WRW+WR.litmus Z6.2.litmus

3.2W.litmus ISA2.litmus RWC.litmus WRR+2W.litmus WWC.litmus Z6.3.litmus

3.LB.litmus LB.litmus SB.litmus WRW+2W.litmus Z6.0.litmus Z6.4.litmus

3.SB.litmus MP.litmus S.litmus W+RWC.litmus Z6.1.litmus Z6.5.litmus

Alternatively, one may instrut lassify7 to produe output for diyone7. In that ase one should pass option

-diyone to lassify7 so as to instrut it to produe output that is parsable by diyone7:

% rm -rf sr && mkdir sr

% myles7 �all | lassify7 -arh X86 -diyone | diyone7 -arh X86 -o sr

Generator produed 23 tests

% ls sr

54

2+2W.litmus �all R.litmus WRC.litmus WRW+WR.litmus Z6.2.litmus

3.2W.litmus ISA2.litmus RWC.litmus WRR+2W.litmus WWC.litmus Z6.3.litmus

3.LB.litmus LB.litmus SB.litmus WRW+2W.litmus Z6.0.litmus Z6.4.litmus

3.SB.litmus MP.litmus S.litmus W+RWC.litmus Z6.1.litmus Z6.5.litmus

11.1 Usage of myle7

The tool myle7 has no options and takes litmus soure �les or index �les as arguments. It outputs a list

of lines to standard output. Eah line starts with a test name, su�xed by �:�, then the yle of the named

test. Notie that this format is the input format to diyone7 in its seond operating mode � see Se. 10.3.

It is important to notie that, for myle7 to extrat yles, those must be present as meta-information in

soure �les. In pratie, this means that myle7 operates normally on soures produed by diyone7, diyross7

and diy7. Moreover only one instane of a given yle will be output.

11.2 Usage of lassify7

The tool lassify7 reads its standard input, interpreting is as a list of yles in the output format of myle7.

It normalises and lassi�es those yles. The tool lassify7 aepts the following doumented options:

-arh (X86|PPC|ARM) Set arhiteture. Default is PPC. ARM support is experimental.

-u Instrut lassify7 to fail when two tests have the same normalised name. Otherwise lassify7 will output

one line per test, regardless of dupliate names.

-diyone Output a normalised list of names and yles, whih is legal input for diyone7.

55

Part III

Simulating memory models with herd7

The tool herd7 is a memory model simulator. Users may write simple, single events, axiomati models of

their own and run litmus tests on top of their model. The herd7 distribution already inludes some models.

The authors of herd7 are Jade Alglave and Lu Maranget.

12 Writing simple models

This setion introdues at, our language for desribing memory models. The at language is a domain

spei� language for writing and exeuting memory models. From the language perspetive, at is loosely

inspired by OCaml. That is, it is a funtional language, with similar syntax and onstruts. The basi values

of at are sets of events, whih inlude memory events but also additional events suh as fene events, and

relations over events.

12.1 Sequential onsisteny

The simulator herd7 aepts models written in text �les. For instane here is s.at, the de�nition of the

sequentially onsistent (SC) model in the partial-order style:

SC

(* Define o (and fr) *)

inlude "os.at"

(* All ommuniation relations *)

let om = rf | fr | o

(* Sequential onsisteny *)

ayli po | om as s

The model above illustrates some features of model de�nitions:

1. A model �le starts with a tag (here SC), whih an also be a string (in double quotes) in ase the tag

inludes speial haraters or spaes.

2. Pre-de�ned bindings. Here po (program order) and rf (read from) are pre-de�ned. The remaining two

ommuniation relations (o and fr) are omputed by the inluded �le os.at, whih we desribe

later � See Se. 12.4. For simpliity, we may as well assume that o and fr are pre-de�ned.

3. The omputation of new relations from other relations, and their binding to a name with the let

onstrut. Here, a new relation om is the union �|� of the three pre-de�ned ommuniation relations.

4. The peformane of some heks. Here the relation �po | om� (i.e. the union of program order po and

of ommuniation relations) is required to be ayli. Cheks an be given names by su�xing them

with �as name�. This last feature will be used in Se. 13.2

One an then run some litmus test, for instane SB (for Store Bu�ering, see also Se. 1.1), on top of the

SC model:

% herd7 -model ./s.at SB.litmus

Test SB Allowed

States 3

56

0:EAX=0; 1:EAX=1;

0:EAX=1; 1:EAX=0;

0:EAX=1; 1:EAX=1;

No

Witnesses

Positive: 0 Negative: 3

Condition exists (0:EAX=0 /\ 1:EAX=0)

Observation SB Never 0 3

Hash=7dbd6b8e6dd4ab2ef3d48b0376fb2e3

The output of herd7 mainly onsists in the list of �nal states that are allowed by the simulated model.

Additional output relates to the test ondition. One sees that the test ondition does not validate on top

of SC, as �No� appears just after the list of �nal states and as there is no �Positive� witness. Namely, the

ondition �exists (0:EAX=0 /\ 1:EAX=0)� re�ets a non-SC behaviour, see Se. 12.1.

The simulator herd7works by generating all andidate exeutions of a given test. By �andidate exeution�

we mean a hoie of events, program order po, of the read-from relation rf and of �nal writes to memory

(last write to a given loation)

6

. In the ase of the SB example, we get the following four exeutions:

a: Wx=1

b: Ry=1 d: Rx=1

: Wy=1

po

rf

rf

rf

po

rf

a: Wx=1

b: Ry=1

: Wy=1

d: Rx=0

po

rf

rf

po

rf

fr

rf

a: Wx=1

b: Ry=0 d: Rx=1

: Wy=1

po

rf

rf

fr

po

rf

rf

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

po

rf

fr

po

rf

fr

rf

rf

Indeed, there is no hoie for the program order po, as there are no onditional jumps in this example; and

no hoie for the �nal writes either, as there is only one store per loation, whih must be o-after the initial

stores (pitured as small red dots). Then, there are two read events from loations x and y respetively,

whih take their values either from the initial stores or from the stores in program. As a result, there are

four possible exeutions. The model s.at gets exeuted on eah of the four andidate exeutions. The

three �rst exeutions are aepted and the last one is rejeted, as it presents a yle in po | fr. On the

following diagram, the yle is obvious:

6

Alternatively, we may adopt the simpler view that a andidate exeution inludes a hoie of all ommuniation relations.

57

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

po rf

fr

porf

fr

rf

rf

12.2 Total Store Order (TSO)

However, the non-SC exeution shows up on x86 mahines, whose memory model is TSO. As TSO relaxes

the write-to-read order, we attempt to write a TSO model tso-00.at, by simply removing write-to-read

pairs from the ayliity hek:

"A first attempt for TSO"

inlude "os.at"

(* Communiation relations that order events*)

let om-tso = rf | o | fr

(* Program order that orders events *)

let po-tso = po & (W*W | R*M)

(* TSO global-happens-before *)

let ghb = po-tso | om-tso

ayli ghb as tso

show ghb

This model illustrates several features of model de�nitions:

• New prede�ned sets: W, R and M, whih are the sets of read events, write events and of memory events,

respetively.

• The artesian produt operator �*� that returns the artesian produt of two event sets as a relation.

• The intersetion operator �&� that operates on sets and relations.

As a result, the e�et of the delaration let po-tso = po & (W*W | R*M) is to de�ne po-tso as the program

order on memory events minus write-to-read pairs.

We run SB on top of the tentative TSO model:

58

% herd7 -model tso-00.at SB.litmus

Test SB Allowed

States 4

0:EAX=0; 1:EAX=0;

0:EAX=0; 1:EAX=1;

0:EAX=1; 1:EAX=0;

0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 1 Negative: 3

...

The non-SC behaviour is now aepted, as write-to-read po-pairs do not partiipate to the ayliity hek

any more. In e�et, this allows the last exeution above, as ghb (i.e. po-tso | om-tso) is ayli.

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

po

ghb fr

po

ghb fr

However, our model tso-00.at is �awed: it is still to strit, forbidding some behaviours that the TSO

model should aept. Consider the test SB+r�-pos, whih is test STFW-PPC for X86 from Se. 1.3 with a

normalised name (see Se. 10.1). This test targets the following exeution:

59

a: Wx=1

b: Rx=1

: Ry=0

d: Wy=1

e: Ry=1

f: Rx=0

rf

po

fr

rf

po

fr

rf

rf

Namely the test ondition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) spei�es that Thread 0
writes 1 into loation x, reads the value 1 from the loation x (possibly by store forwarding) and then reads

the value 0 from the loation y; while Thread 1 writes 1 into y, reads 1 from y and then reads 0 from x.
Hene, this test derives from the previour SB by adding loads in the middle, those loads being satis�ed from

loal stores. As an be seen by running the test on top of the tso-00.at model, the target exeution is

forbidden:

% herd7 -model tso-00.at SB+rfi-pos.litmus

Test SB+rfi-pos Allowed

States 15

0:EAX=0; 0:EBX=0; 1:EAX=0; 1:EBX=0;

...

0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=1;

No

Witnesses

Positive: 0 Negative: 15

..

60

However, running the test with litmus demonstrates that the behaviour is observed on some X86 mahine:

% arh

x86_64

% litmus7 -mah x86 SB+rfi-pos.litmus

...

Test SB+rfi-pos Allowed

Histogram (4 states)

11589 *>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=0;

3993715:>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

3994308:>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

388 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=1;

Ok

Witnesses

Positive: 11589, Negative: 7988411

Condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) is validated

...

As a onlusion, our tentative TSO model is too strong. The following diagram pitures its ghb relation:

61

a: Wx=1

b: Rx=1

: Ry=0

d: Wy=1

e: Ry=1

f: Rx=0

rf ghb

ghb

fr ghb rf ghb

frghb

ghb

rf

rf

One easily sees that ghb is yli, wheras it should not. Namely, the internal read-from relation r� does not

reate global order in the TSO model. Hene, r� is not inluded in ghb. We rephrase our tentative TSO

model, resulting into the new model tso-01.at:

"A seond attempt for TSO"

inlude "os.at"

(* Communiation relations that order events*)

let om-tso = rfe | o | fr

(* Program order that orders events *)

let po-tso = po & (W*W | R*M)

(* TSP global-happens-before *)

let ghb = po-tso | om-tso

ayli ghb

show ghb

62

As an be observed above rfi (internal read-from) is no longer inluded in ghb. However, rfe (external

read-from) still is. Notie that rfe and rfi are pre-de�ned.

As intended, this new tentative TSO model allows the behaviour of test SB+r�-pos:

% herd7 -model tso-01.at SB+rfi-pos.litmus

Test SB+rfi-pos Allowed

States 16

...

0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

...

Ok

Witnesses

Positive: 1 Negative: 15

...

And indeed, the global-happens-before relation is no-longer yli:

a: Wx=1

b: Rx=1

: Ry=0

d: Wy=1

e: Ry=1

f: Rx=0

rf

ghb

ghbfr

rf

ghbfr ghb

rf

rf

We are not done yet, as our model is too weak in two aspets. First, it has no semantis for fenes. As

a result the test SB+mfenes is allowed, whereas it should be forbidden, as this is the very purpose of the

63

fene mfene.

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

mfene

fr

fr

mfenerf

rf

One easily solves this issue by �rst de�ning the mfene that relates events with a MFENCE event po-in-between

them; and then by adding mfene to the de�nition of po-tso:

let mfene = po & (_ * MFENCE) ; po

let po-tso = po & (W*W | R*M) | mfene

Notie how the relation mfene is de�ned from two pre-de�ned sets: �_� the universal set of all events

and MFENCE the set of fene events generated by the X86 mfene instrution. An alternative, more preise

de�nition, is possible:

let mem-to-mfene = po & M * MFENCE

let mfene-to-mem = po & MFENCE * M

let mfene = mem-to-mfene; mfene-to-mem

This alternative de�nition of mfene, although yielding a smaller relation, is equivalent to the original one

for our purpose of heking ghb ayliity.

But the resulting model is still too weak, as it allows some behaviours that any model must rejet for

the sake of single thread orretness. The following test CoRWR illustrates the issue:

X86 CoRWR

{ }

P0 ;

MOV EAX,[x℄ ;

MOV [x℄,$1 ;

64

MOV EBX,[x℄ ;

exists (0:EAX=1 /\ 0:EBX=0)

The test �nal ondition targets the following exution andidate:

ix:Wx=0

b: Wx=1

: Rx=0

a: Rx=1

o

rf

rf

fr

The TSO hek �ayli po-tso|om-tso� does not su�e to rejet two absurd behaviours pitured in the

exeution diagram above: (1) the read a is allowed to read from the po-after write b, as r� is not inluded

in om-tso; and (2) the read c is allowed to read the initial value of loation x although the initial write d is

o-before the write b, sine po & (W * R) is not in po-tso.

For any model, we rule out those very untimely behaviours by the so-alled unipro hek that states that

exeutions projeted on events that aess one variable only are SC. In pratie, having de�ned po-lo as po

restrited to events that touh the same address (i.e. as po & lo), we further require the ayliity of the

relation po-lo|fr|rf|o. In the TSO ase, the unipro hek an be somehow simpli�ed by onsidering

only the yles in po-lo|fr|rf|o that are not already rejeted by the main hek of the model. This

amounts to design spei� heks for the two relations that are not global in TSO: rfi and po & (W*R).

Doing so, we �nally produe a orret model for TSO tso-02.at:

"A third attempt for TSO"

inlude "os.at"

(* Unipro hek speialized for TSO *)

irreflexive po-lo & (R*W); rfi as uniproRW

irreflexive po-lo & (W*R); fri as uniproWR

(* Communiation relations that order events*)

let om-tso = rfe | o | fr

(* Program order that orders events *)

let mfene = po & (_ * MFENCE) ; po

let po-tso = po & (W*W | R*M) | mfene

(* TSP global-happens-before *)

let ghb = po-tso | om-tso

show mfene,ghb

ayli ghb as tso

65

This last model illustrates another feature of at: herd7 may also performs irre�exivity heks with the

keyword �irreflexive�.

12.3 Sequential onsisteny, total order de�nition

We now illustrate another style of model. We onsider the original de�nition of sequential onsisteny [3℄.

An exeution is SC when there exists a total order S on events suh that:

1. S inludes the program order po;

2. and read events read from the most reent write events in the past, i.e. a read r from loation x reads

the value stored by the S-maximal write amongst those writes to loation x that are S smaller than r.

So we ould just generate all total orders amongst memory events, and �lter those �sheduling order andi-

dates� aording to the two rules above.

Things are a bit more omplex in herd7, due to the presene of initial and �nal writes. Up to now we

have ignored initial and �nal writes, we are now going to integrate them expliitly.

Initial writes are write events that initialise the memory loations. Initial writes are not generated by

the instrutions of the test. Instead, they are reated by herd7 mahinery, and are available from model text

as the set IW.

Final writes may be generated by program instrutions, and, when suh, they must be ordered by S.
A �nal write is a write to a phantom read performed one program exeution is over. The onstraint on

�nal writes originates from herd7 tehnique to enumerate exeution andidates: atual exeution andidates

also inlude a hoie of �nal writes for the loations that are observed in the test �nal ondition

7

. As test

outome (i.e. the �nal values of observed loations) is settled before exeuting the model, it is important

not to aept exeutions that yield a di�erent outome. Doing so may validate outomes that should be

rejeted. In pratie, the �nal write wf to loation x must follow all other writes to x in S. Considering

that the set of �nal writes is available to at models as the pre-de�ned set FW, the onstraint on �nal writes

an be expressed as a relation:

let preSC = lo & (W \ FW) * FW

Where lo is a prede�ned relation that relates all events that aess the same loation.

By ontrast with �nal writes, initial writes are not generated by program instrutions, and it is possible

not to order them ompletely. In partiular, it is not useful to order initial writes to di�erent loations, nor

the initial write to loation x with any aess to loation y. Notie that we ould inlude initial writes in S
as we did for �nal writes. Not doing so will improve e�ieny.

Finally, the order S is not just any order on memory events (prede�ned set M, whih inludes initial and

�nal writes writes), it is a topologial order of the program events (implemented as the set M\IW) that extends

the pre-order preSC. We an generate all suh topologial orders with the at primitive linearisations:

let allS = linearisations(M\IW,preSC)

The all linearisation(E,r), where E is a set of events and r is a relation on events, returns the set of

all total orders de�ned on S that extend r. Notie that if r is yli, the empty set is returned.

We now need to iterate over the set allS. We do so with the with onstrut:

with S from allS

It is important to notie that the onstrut above extends the urrent exeution andidate (i.e. a hoie of

events, plus a hoie of two relations po and rf) with a andidate order S. In other words, the sope of

the iteration is the remainder of the model text. One model exeution terminates for a hoie of S (some

7

Doing so permits pruning exeutions that are irrelevant to the test �nal ondition, see herd7 option -speedhek

66

element of allS), model exeution restarts just after the with onstrut, with variable S bound to the next

hoie piked in allS.

As a �rst onsisteny hek, we hek that S inludes the program order:

empty po \ S as PoCons

Notie that, to hek for inlusion, we test the emptyness of relation di�erene (operator �\�).

It remains to hek that the rf relation of the exeution andidate is the same as the one de�ned by

ondition 2. To that aim, we omplement S with the onstraint over initial writes that must preede all

events to their loation:

let S = S | lo & IW * (M \ IW)

Observe that S is no longer a total order. However, it is still a total order when restrited to events that

aess a given loation, whih is all that matters for ondition 2 to give a value to all reads. As regards our

SC model, we de�ne rf-S the read-from relation indued by S as follows:

let WRS = W * R & S & lo (* Writes from the past, same loation *)

let rf-S = WRS \ (S;WRS) (* Most reent amongst them *)

The de�nition is a two-step proess: we �rst de�ne a relation WRS from writes to reads (to the same loation)

that follow them in S. Observe that, by omplementing S with initial writes, we ahieve that for any read r
there exists at least a write w suh thar (w, r) ∈ WRS. It then remains to �lter out non-maximal writes in WRS

as we do in the de�nition of rf-S, by the means of the di�erene operator �\�. We then hek the equality

of rf (pre-de�ned as part of the andidate exeution) and of rf-S by double inlusion:

empty rf \ rf-S as RfCons

empty rf-S \ rf as RfCons

As an exemple, he show six attempts of po ompatible S orders for the non-SC outome of the test SB

in �gure 3. Observe that all attempts fail as rf and rf-S are di�erent in all diagrams.

We also show all suessfull SC sheduling in �gure 4.

For referene we provide our omplete model lamport.at

"SC, L. Lamport style"

(* writes to loation x preede final write to loation x *)

let preSC = lo & (W \ FW) * FW

(* Compute the set of total orders that extend preSC on program events *)

let allS = linearisations(M \ IW,preSC)

(* For all suh orders *)

with S from allS

(* Chek ompatibility with po *)

empty po \ S as SPo

(* Add initial writes *)

let S = S | lo & IW * (M \ IW)

(* Define most reent write in the past *)

let WRS = W * R & S & lo (* Writes from the past, same loation *)

let rf-S = WRS \ (S;WRS) (* Most reent amongst them *)

67

Figure 3: Failed attempts of SC sheduling orders S.

iy:Wy=0

b: Ry=0

ix:Wx=0

a: Wx=1

d: Rx=0

: Wy=1

S ,rf-S ,rf

S

rf

S

rf-SS

S

iy:Wy=0

b: Ry=0

: Wy=1

ix:Wx=0

a: Wx=1

d: Rx=0

rf

S

S

rf po

S

rf-S

S

S ,rf-S

po

iy:Wy=0

b: Ry=0

: Wy=1

ix:Wx=0

a: Wx=1

d: Rx=0

rf

S

S

rf

po

S

rf-S

rf-S

S

S

iy:Wy=0

b: Ry=0

: Wy=1ix:Wx=0

a: Wx=1

d: Rx=0

rf

S

S

rf S

rf-S

S

S

rf-S

po

iy:Wy=0

b: Ry=0

: Wy=1 ix:Wx=0

a: Wx=1

d: Rx=0

rf

S

S

rf

po

S ,rf-S

S

rf-S

po

S

iy:Wy=0

b: Ry=0

: Wy=1 ix:Wx=0

d: Rx=0

a: Wx=1

rf

S

S ,rf-S ,rf

S

rf-S

S

S

68

Figure 4: SC exeutions of test SB.

iy:Wy=0

b: Ry=0

ix:Wx=0

a: Wx=1

d: Rx=1

: Wy=1

S ,rf-S ,rf

S

S

rf-S ,rfS

S

iy:Wy=0

: Wy=1 ix:Wx=0

d: Rx=0

a: Wx=1

b: Ry=1

S

S ,rf-S ,rf

S

rf-S ,rf

S

S

iy:Wy=0

: Wy=1

ix:Wx=0

a: Wx=1

b: Ry=1

d: Rx=1

S

S

po

S

rf-S ,rf

S

S ,rf-S ,rf

po

iy:Wy=0

: Wy=1

ix:Wx=0

a: Wx=1

b: Ry=1

d: Rx=1

S

S

po

S

rf-S ,rf

rf-S ,rf

S

S

iy:Wy=0

: Wy=1ix:Wx=0

a: Wx=1

b: Ry=1

d: Rx=1

S

S

S

rf-S ,rf

S

S

rf-S ,rf

po

iy:Wy=0

: Wy=1 ix:Wx=0

a: Wx=1

b: Ry=1

d: Rx=1

S

S

po

S ,rf-S ,rf

S

rf-S ,rf

po

S

69

(* Chek equality with rf *)

empty rf \ rf-S as RfCons

empty rf-S \ rf as RfCons

12.4 Computing oherene orders

All the models seen so far inlude the �le os.at that de�ne �oherene relations�, written o. This setion

desribes the �le os.at. It an be skipped in �rst reading, as users may �nd su�ient to inlude the �le.

For a given loation x the oherene order is a total order on the write events to loation x. The oherene
relation o is the union of those total orders for all loations. In this setion, we show how to ompute all

possible oherene orders for a andidate exeution. We seize the opportunity to introdue advaned features

of the at language, suh as funtions and pattern mathing over sets.

Possible oherene orders for a given loation x are not totally arbitrary in two aspets:

1. The write events to loation x inlude the initial write event to loation x. The initial write to x must

ome �rst in any oherene order for x.

2. One of the writes to x performed by the test (may) have been delared to be �nal by herd7 mahinery

prior to model exeution. In that ase, the �nal write to x must ome last in any oherene order for x.

See Se. 12.3 for details on initial and �nal writes.

We an express the two onditions above for all loations of the program as a relation o0:

let o0 = lo & (IW*(W\IW)|(W\FW)*FW)

Where the pre-de�ned sets IW and FW are the sets of all initial and �nal writes respetively.

Then, assuming that Wx is the set of all writes to loation x, one an ompute the set of all possible

oherene orders for x with the linearisations primitive as linearisations(Wx,o0). In pratie, we

de�ne a funtion that takes the set Wx as an argument:

let makeCoX(Wx) = linearisations(Wx,o0)

The linearisations primitive is introdued in Se. 12.3. It returns all topologial sorts of the events of the

set Wx that are ompatible with the relation o0.

In fat, we want to ompute the set of all possible o relations, i.e. all the unions of all the possible

oherene orders for all loations x. To that end we use another at primitive: partition(S), whih takes

a set of events as argument and returns a set of set of events T = {S1, . . . , Sn}, where eah Si is the set of

all events in S that at on loation Li, and, of ourse S is the union

⋃i=n

i=1 Si. Hene we shall ompute the

set of all Wx sets as partition(W), where W is the pre-de�ned set of all writes (inluding initial writes).

For ombining the e�et of the partition and linearisations primitives, we �rst de�ne a map funtion

that, given a set S = {e1, . . . , en} and a funtion f , returns the set {f(e1), . . . , f(en)}:

let map f =

let re do_map S = math S with

|| {} -> {}

|| e ++ S -> f e ++ do_map S

end in

do_map

The map funtion is written in urried style. That is one alls it as map f S, parsed as (map f) S. More

preisely, the left-most funtion all (map f) returns a funtion. Here it returns do_map with free variable

f being bound to the argument f . The de�nition of map illustrate several new features:

70

1. The empty set onstant �{}�, and the set addition operator e ++ S that returns the set S augmented

with element e.

2. Reursive funtion de�nitions. The funtion do_map is reursive as it alls itself.

3. Pattern mathing on sets. This onstrut, similar to OCaml pattern mathing on lists, disriminates

between empty (|| {} -> e0) and non-empty (|| e ++ es -> e1) sets. In the seond ase of a non-

empty set, the expression e1 is evaluated in a ontext extended with two bindings: a binding from

the variable e to an arbitrary element of the mathed set, and a binding from the variable es to the

mathed set minus the arbitrary element.

Then, we generate the set of all possible oherene orders for all loations x as follows:

let allCoX = map makeCoX (partition(W))

Notie that allCoX is a set of sets of relations, eah element being the set of all possible oherene orders

for a spei� x.
We still need to generate all possible o relations, that is all unions of the possible oherene orders for

all loations x. It an be done by another at funtion: ross, whih takes a set of sets S = {S1, S2, . . . , Sn}
as argument and returns all possible unions built by piking elements from eah of the Si:

{ e1 ∪ e2 ∪ · · · ∪ en | e1 ∈ S1, e2 ∈ S2, . . . , en ∈ Sn }

One may notie that if S is empty, then ross should return one relation exatly: the empty relation,

i.e. the neutral element of the union operator. This hoie for ross(∅) is natural when we de�ne ross

indutively:

ross(S1 ++S) =
⋃

e1∈S1,t∈ross(S)

{e1 ∪ t}

In the de�nition above, we simply build ross(S1 ++S) by building the set of all unions of one relation e1
piked in S1 and of one relation t piked in ross(S).

So as to write ross, we �rst de�ne a lassial fold funtion over sets: given a set S = {e1, e2, . . . , en},
an initial value y0 and a funtion f that takes a pair (e, y) as argument, fold omputes:

f(ei1 , f(ei2 , . . . , f(ein , y0)))

where i1, i2, . . . , in de�nes a permutation of the indies 1, 2, . . . , n.

let fold f =

let re fold_re (es,y) = math es with

|| {} -> y

|| e ++ es -> fold_re (es,f (e,y))

end in

fold_re

The funtion fold is written in the same urried style as map. Notie that the inner funtion fold_re

takes one argument. However this argument is a pair. As a gentle example of fold usage, we ould have

de�ned map as:

let map f = fun S -> fold (fun (e,y) -> f e ++ y) (S,{})

This example also introdue �anonymous� funtions.

As a more involved example of fold usage, we write the funtion ross.

71

let re ross S = math S with

|| {} -> { 0 } (* 0 is the empty relation *)

|| S1 ++ S ->

let ts = ross S in

fold

(fun (e1,r) -> map (fun t -> e1 | t) ts | r)

(S1,{})

end

The funtion ross is a reursive funtion over a set (of sets). Its ode follows the indutive de�nition given

above.

Finally, we generate all possible o relations by:

let allCo = ross allCoX

The �le os.at goes on by iterating over allCo using the with x from S onstrut:

with o from allCo

See Se. 12.3 for details on this onstrut.

One o has been de�ned, one de�nes fr and internal and external variations:

(* From now, o is a oherene relation *)

let oi = o & int

let oe = o & ext

(* Compute fr *)

let fr = rf^-1 ; o

let fri = fr & int

let fre = fr & ext

The pre-de�ned relation ext (resp. int) relates events generated by di�erent (resp. the same) threads.

13 Produing pitures of exeutions

The simulator herd7 an be instruted to produe pitures of exeutions. Those pitures are instrumental in

understanding and debugging models. It is important to understand that herd7 does not produe pitures

by default. To get pitures one must instrut herd7 to produe pitures of some exeutions with the -show

option. This option aepts spei� keywords, its default being �none�, instruting herd7 not to produe any

piture.

A frequentlty used keyword is �prop� that means �show the exeutions that validate the proposition in

the �nal ondition�. Namely, the �nal ondition in litmus test is a quanti�ed boolean proposition as for

instane �exists (0:EAX=0 /\ 1:EAX=0)� at the end of test SB.

But this is not enough, users also have to speify what to do with the piture: save it in �le in the DOT

format of the graphviz graph visualization software, or display the image,

8

or both. One instruts herd7

to save images with the -o dirname option, where dirname is the name of a diretory, whih must exists.

Then, when proessing the �le name.litmus, herd7 will reate a �le name.dot into the diretory dirname.

For displaying images, one uses the -gv option.

As an example, so as to display the image of the non-SC behaviour of SB, one should invoke herd7 as:

% herd7 -model tso-02.at -show prop -gv SB.litmus

As a result, users should see a window popping and displaying this image:

8

This option requires the Postsript visualiser gv.

72

Test SB, Generi(A third attempt for TSO)

Thread 0

Thread 1

e: Wy=0

Init

b: Ry=0

pro:0 poi:1

MOV EAX,[y℄

: Wy=1

pro:1 poi:0

MOV [y℄,1

f: Wx=0

Init

a: Wx=1

pro:0 poi:0

MOV [x℄,1

d: Rx=0

pro:1 poi:1

MOV EAX,[x℄

rf ghbo

o

rf ghbpo

ghb

fr

po

ghb fr

Notie that we got the PNG version of this image as follows:

73

Figure 5: The non-SC behaviour of SB is allowed by TSO

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

po

ghb fr

po

ghb fr

% herd7 -model tso-02.at -show prop -o /tmp SB.litmus

% dot -Tpng /tmp/SB.dot -o SB+CLUSTER.png

That is, we applied the dot tool from the graphviz pakage, using the appropriate option to produe a PNG

image.

One may observe that there are ghb arrows in the diagram. This results from the show ghb instrution

at the end of the model �le tso-02.at.

13.1 Graph modes

The image above muh di�ers from the one in Se. 12.2 that desribes the same exeution and that is

reprodued in Fig. 5

In e�et, herd7 an produe three styles of pitures, dot lustered pitures, dot free pitures, and neato

pitures with expliit plaement of the events of one thread as a olum. The style is ommanded by the

-graph option that aepts three possible arguments: luster (default), free and olumns. The following

pitures show the e�et of graph styles on the SB example:

74

-graph luster -graph free -graph olumns

Thread 0

Thread 1

iy:Wy=0

b: Ry=0: Wy=1

ix:Wx=0

a: Wx=1

d: Rx=0

rf ghbo

o

rf ghbpo

ghb

fr

po

ghb fr

iy:Wy=0

b: Ry=0

: Wy=1 ix:Wx=0

a: Wx=1

d: Rx=0

rf ghb

o

o

rf ghbpo:0

ghb fr

po:1

ghb fr

ix: Wx=0, iy: Wy=0

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

Thread 0 Thread 1

o

rf ghb

o

rf ghb

po

ghbfr

po

ghbfr

Notie that we used another option -squished true that muh redues the information displayed in nodes.

Also notie that the �rst two pitures are formatted by dot, while the rightmost piture is formatted by

neato.

One may also observe that the �-graph olumns� piture does not look exatly like Fig. 5. For instane

the ghb arrows are thiker in the �gure. There are many parameters to ontrol neato (and dot), many of

whih are aessible to herd7 users by the means of appropriate options. We do not intend to desribe them

all. However, users an reprodue the style of the diagram of this manual using yet another feature of herd7:

on�guration �les that ontains settings for herd7 options and that are loaded with the -onf name option.

In this manual we mostly used the do.fg on�guration �le. As this �le is present in herd7 distribution,

users an use the diagram style of this manual:

% herd7 -onf do.fg ...

13.2 Showing forbidden exeutions

Images are produed or displayed one the model has been exeuted. As a onsequene, forbidden exeutions

won't appear by default. Consider for instane the test SB+mfenes, where the mfene instrution is used

to forbid SB non-SC exeution. Runing herd7 as

% herd7 -model tso-02.at -onf do.fg -show prop -gv SB+mfenes.litmus

75

will produe no piture, as the TSO model forbids the target exeution of SB+mfenes.

To get a piture, we an run SB+mfenes on top of the mininal model, a pre-de�ned model that allows

all exeutions:

% herd7 -model minimal -onf do.fg -show prop -gv SB+mfenes.litmus

And we get the piture:

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

mfene

fr

fr

mfenerf

rf

It is worth mentioning again that although the minimal model allows all exeutions, the �nal ondition

selets the displayed piture, as we have spei�ed the -show prop option.

The piture above shows mfene arrows, as all fene relations are displayed by the minimal model.

However, it does not show the ghb relation, as the minimal model knows nothing of it. To display ghb we

ould write another model �le that would be just as tso-02.at, with heks erased. The simulator herd7

provides a simpler tehnique: one an instrut herd7 to ignore either all heks (-through invalid), or a

seletion of heks (-skipheks name1,...,namen). Thus, either of the following two ommands

% herd7 -through invalid -model tso-02.at -onf do.fg -show prop -gv SB+mfenes.litmus

% herd7 -skiphek tso -model tso-02.at -onf do.fg -show prop -gv SB+mfenes.litmus

will produe the piture we wish:

76

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

mfeneghb

ghb fr

ghb fr

mfene ghbrf

rf

Notie that mfene and ghb are displayed beause of the instrution �show mfene ghb� (fene relation are

not shown by default); while -skiphek tso works beause the tso-02.at model names its main hek

with �as tso�.

The image above is barely readable. For suh graphs with many relations, the luster and free modes

are worth a try. The ommands:

% herd7 -skiphek tso -model tso-02.at -onf do.fg -show prop -graph luster -gv SB+mfenes.litmus

% herd7 -skiphek tso -model tso-02.at -onf do.fg -show prop -graph free -gv SB+mfenes.litmus

will produe the images:

77

Thread 0

Thread 1

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

mfene ghb

ghb fr

mfene ghb

ghb fr

rf

rf

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

po:0 mfeneghb

frghb

po:1 mfeneghb

frghb

rf

rf

Namely, ommand line options are sanned left-to-right, so that most of the settings of do.fg are kept

9

(for instane thik ghb arrows), while the graph mode is overriden.

14 Model de�nitions

We desribe our at langage for de�ning models. The syntax of the language is given in BNF-like nota-

tion. Terminal symbols are set in typewriter font (like this). Non-terminal symbols are set in itali font

(like that). An unformatted vertial bar . . . | . . . denotes alternative. Square brakets [. . .] denote optional
omponents. Curly brakets { . . .} denotes zero, one or several repetitions of the enlosed omponents.

Parentheses (. . .) denote grouping.
Model soure �les may ontain omments of the OCaml type ((*. . . *), an be nested), or line omments

starting with �//� and running until end of line.

14.1 Overview

The at language is muh inspired by OCaml, featuring immutable bindings, �rst-lass funtions, pattern

mathing, et. However, at is a domain spei� language, with important di�erenes from OCaml.

1. Base values are speialised, they are sets of events and relations over events. There are also tags,

akin to C enumerations or OCaml �onstant� onstrutors and �rst lass funtions. There are two

strutured values: tuples of values and sets of values.

9

The setting of showthread is also hanged, by the omitted -showthread true ommand line option

78

2. There is a distintion between expressions that evaluate to some value, and instrutions that are

exeuted for their e�et.

A model, or at program is a sequene of instrutions. At startup, pre-de�ned identi�ers are bound to event

sets and relations over events. Those pre-de�ned identi�ers desribe a andidate exeution (in the sense of

the memory model). Exeuting the model means allowing or forbiding that andidate exeution.

14.2 Identi�ers

letter ::= a . . . z | A . . . Z

digit ::= 0 . . . 9

id ::= letter {letter | digit | _ | . | -}

Identi�ers are rather standard: they are a sequene of letters, digits, �_� (the undersore harater), �.�

(the dot harater) and �-� (the minus harater), starting with a letter. Using the minus harater inside

identi�ers may look a bit surprising. We did so as to allow identi�ers suh as po-lo.

At startup, pre-de�ned identi�ers are bound to event sets and to relations between events.

Those pre-de�ned identi�ers �rst desribe the events of the andidate exeution as various sets, as de-

sribed by the �rst table of �gure 6. Spei� fene event sets depends on the test arhiteture, their name is

Figure 6: Pre-de�ned event sets.

identi�er name desription

W write events

R read events

M memory events we have M = W ∪ R

IW initial writes feed reads that read from the initial state

FW �nal writes writes that are observed at the end of test exeution

B branh events

RMW read-modify-write

events

F fene events

NAME spei� fene events those depend on the test arhiteture

arhiteture fene sets

X86 MFENCE, SFENCE, LFENCE

PPC SYNC, LWSYNC, EIEIO, ISYNC

ARM DMB, DMB.ST, DSB, DSB.ST, ISB

MIPS SYNC

AArh64 . . .

always upperase and derive from the mnemoni of the instrution that generates them. The seond table

of �gure 6 shows a (non-exhaustive) list.

Other pre-de�ned identi�ers are relations. Most of those are the program order po and its re�nements:

79

identi�er name desription

po program order instrution order lifted to events

addr address dependeny the address of the seond event depends on the value

loaded by the �rst (read) event

data data dependeny the value stored by the seond (write) event depends

on the value loaded by the �rst (read) event

trl ontrol dependeny the seond event is in a branh ontroled by the value

loaded by the omm�rst (read) event

rmw read-exlusive write-

exlusive pair

relate the read and write events emitted by mathing

suessful load-reserve store onditional instrutions.

Finally, a few pre-de�ned relations desribe the exeution andidate struture and write-to-read ommu-

niation:

identi�er name desription

id identity relates eah event to itself

lo same loation events that touh the same address

ext external events from di�erent threads

int internal events from the same thread

rf read-from links a write w to a read r taking its value from w

Some additional relations are de�ned by library �les written in the at language, see Se. 14.7.

80

14.3 Expressions

Expressions are evaluated by herd7, yielding a value.

expr ::= 0

| id

| tag

| () | (expr , expr {, expr})
| { } | { expr {, expr} }
| expr * | expr + | expr ? | expr ^-1
| ~ expr

| expr | expr | expr ++ expr | expr ; expr | expr \ expr | expr & expr | expr * expr

| expr expr

| fun pat -> expr

| let [re] binding {and binding} in expr

| math expr with lauses end

| (expr) | begin expr end

| instrutions id [taglist℄

tag ::= ' id

taglist ::= tag, taglist

pat ::= id | () | (id {, id})

binding ::= valbinding | funbinding

valbinding ::= id = expr

funbinding ::= id pat = expr

lauses ::= taglauses | setlauses

taglauses ::= [||] tag -> expr {|| tag -> expr} [_ -> expr]

setlauses ::= [||] { } -> expr || id ++ id -> expr

Simple expressions

Simple expressions are the empty relation (keyword 0), identi�ers id and tags tag . Identi�ers are bound to

values, either before the exeution (see pre-de�ned identi�ers in Se. 14.2), or by the model itself. Tags are

onstants similar to C enum values or OCaml onstant onstrutors. Tags must be delared with the enum

instrution. We go bak to enum and tags in Se. 14.4 and ??.

Tuples

Tuples inlude a onstant, the empty tuple (), and onstruted tuples (expr1 , expr1 , . . . , exprn), with

n ≥ 2. In other words there is no tuple of size one. Syntax (expr) denotes grouping and has the same

value as expr.

Expliit sets of values

Expliit sets are written as the omma separated list of their elements between urly braes: { expr1 , expr1 , . . . , exprn },

with n ≥ 0. As events are not values, one annot build a set of events using expliit set expressions. However,

81

by exeption, the empty set { } also is the empty set of events and the empty relation. Sets are homogenous,

in the sense that sets hold elements of the same type.

Operator expressions

The transitive and re�exive-transitive losure of an expression are performed by the post�x operators +

and * . The post�x operator ^-1 performs relation inversion. The onstrut expr ? (option) evaluates

to the union of expr value and of the identity relation. Notie that post�x operators operate on relations

only.

There is one pre�x operator ~ that performs relation and set omplement.

In�x operators are | (union), ++ (set addition), ; (sequene), & (intersetion), \ (set

di�erene), and * (artesian produt). In�x operators are listed in order of dereasing preedene, while

post�x and pre�x operators bind tighter than in�x operators. All in�x operators are right-assoiative, exept

set di�erene whih is left-assoiative, and artesian produt whih is non-assoiative.

The union, intersetion and di�erene operators apply to relations and all kinds of sets. The addition

operator expr1 ++ expr2 operates on sets: the value of expr2 must be a set of values S and the operator

returns the set S augmented with the value of expr1.

For the reord, given two relations r1 and r2, the sequene r1; r2 is de�ned as {(x, y) | ∃z, (x, z) ∈
r1 ∧ (z, y) ∈ r2}.

Funtion alls

Funtions alls are written expr1 expr2. That is, funtions are of arity one and the appliation operator is

left impliit. Notie that funtion appliation binds tighter than all binary operators and looser that post�x

operators. Furthermore the impliit appliation operator is left-assoiative.

The at language has all-by-value semantis. That is, the e�etive parameter expr2 is evaluated before

being bound to the funtion formal parameter(s).

N-ary funtions an be enoded either using tuples as arguments or by urry�ation (i.e. as fun-

tions that return funtions). Considering binary funtions, in the former ase, a funtion all is written

expr1 (expr2 , expr3); while in the latter ase, a funtion all is written expr1 expr2 expr3 (whih by

left-assoiativity, is to be understood as (expr1 expr2) expr3). The two forms of funtion all are not

interhangeable, using one or the other depends on the de�nition of the funtion.

Funtions

Funtions are �rst lass values, as re�eted by the anonymous funtion onstrut fun pat -> expr. A funtion

takes one argument only.

In the ase where this argument is a tuple, it may be destrutured by the means of a tuple pattern. That

is pat above is (id1 , . . . idn). For instane here is a funtion that takes a tuple of relations (or sets) as

argument and return their symmetri di�erene:

fun (a,b) -> (a\b)|(b\a)

Funtions have the usual stati soping semantis: variables that appear free in funtion bodies (expr

above) are bound to the value of suh free variable at funtion reation time. As a result one may also write

the symmetri di�erene funtion as follows:

fun a -> fun b -> (a\b)|(b\a)

Loal bindings

The loal binding onstrut let [re]bindings in expr binds the names de�ned by bindings for evaluating the

expression expr . Both non-reursive and reursive bindings are allowed. The funtion binding id pat = expr

is syntati sugar for id = fun pat -> expr.

The onstrut

82

let pat1 = expr1 and . . . and patn = exprn in expr

evaluates expr1, . . . , exprn, and binds the names in the patterns pat1, . . . , patn to the resulting values. The

bindings for pat=expr are as follows: if pat is () , then expr must evaluate to the empty tuple; if pat

is id or (id), then id is bound to the value of expr; if pat is a proper tuple pattern (id1 , . . . ,idn) with

n ≥ 2, then expr must evaluate to a tuple value of size n (v1, . . . , vn) and the names id1, . . . , idn are bound

to the values v1, . . . , vn.
The onstrut

let re pat1 = expr1 and . . . and patn = exprn in expr

omputes the least �xpoint of the equations pat1 = expr1,. . . , patn = exprn. It then binds the names in the

patterns pat1, . . . , patn to the resulting values. The least �xpoint omputation applies to set and relation

values, (using inlusion for ordering); and to funtions (using the usual de�nition ordering).

Pattern mathing over tags

The syntax for pattern mathing over tags is:

math expr with tag1 -> expr1 || · · · || tagn -> exprn || _ -> exprd end

The value of the math expression is omputed as follow: �rst evaluate expr to some value v, whih must be

a tag t. Then v is ompared with the tags tag1, . . . , tagn, in that order. If some tag pattern tagi equals t,
then the value of the math is the value of the orresponding expression expri. Otherwise, the value of the

math is the value of the default expression exprd. As the default lause _ -> exprd is optional, the math

onstrut may fail.

Pattern mathing over sets

The syntax for pattern mathing over sets is:

math expr with { } -> expr1 || id1 ++ id2 -> expr2 end

The value of the math expression is omputed as follow: �rst evaluate expr to some value v, whih must

be a set of values. If v is the empty set, that the value of the math is the value of the orresponding

expression expr1. Otherwise, v is a non-empty set, then let ve be some element in v and vr be the set v
minus the element ve. The value of the math is the value of expr2 in a ontext where id1 is bound to ve
and id2 is bound to vr.

Parenthesised expressions

The expression (expr) has the same value as expr. Notie that a parenthesised expression an also be

written as begin expr end.

83

14.4 Instrutions

Instrution are exeuted for their e�et. There are three kinds of e�ets: adding new bindings, heking a

ondition, and speifying relations that are shown in pitures.

instrution ::= let [re] binding {and binding}
| [flag] hek expr [as id]
| enum id = [|| tag {|| tag}
| proedure id pat = {instrution} end
| all id expr [as id]
| show expr as id

| show id {, id}
| unshow id {, id}
| forall id in expr do {instrution} end
| with id from expr

| inludestring

hek ::= hekname | ~ hekname

hekname ::= ayli | irreflexive | empty

Bindings

The let and let re onstruts bind value names for the rest of model exeution. See the subsetion

on bindings in Setion 14.3 for additional information on the syntax and semantis of bindings.

Reursive de�nitions omputes �xpoints of relations. For instane, the following fragment omputes the

transitive losure of all ommuniation relations:

let om = rf | o | fr

let re omplus = om | (omplus ; omplus)

Notie that the instrution let omplus = (rf|o|fr)+ is equivalent. Notie that herd7 assumes that

reursive de�nitions are well-formed, i.e. that they yield an inreasing funtional. The result of ill-formed

de�nitions is unde�ned.

Although herd7 features reursive funtions, those annot be used to ompute a transitive losure, due

to the lak of some onstrut say to test relation equality. Nevertheless, one an write a generi transitive

losure funtion by using a loal reursive binding:

let tr(r) = let re t = r | (t;t) in t

Again, notie that the instrution let tr (r) = r+ is equivalent.

Thanks to pattern mathing onstruts, reursive funtions are useful to ompute over sets (and tags).

For instane here is the de�nition of a funtion power that ompute power sets:

let re power S = math S with

|| {} -> { {} }

|| e ++ S ->

let re add_e RR = math RR with

|| {} -> { }

|| R + RR -> R ++ (e ++ R) ++ add_e RR

end in

add_e (power S)

end

84

Cheks

The onstrut

hek expr

evaluates expr and applies the hek hek. There are six heks: the three basi ayliity (keyword

ayli), irre�exivity (keyword irreflexive) and emptyness (keyword empty); and their negations.

If the hek sueeds, exeution goes on. Otherwise, exeution stops.

The performane of a hek an optionally be named by appending as id after it. The feature permits

not to perform some heks at user's will, thanks to the -skipheks id ommand line option.

A hek an also be �agged, by pre�xing it with the flag keyword. Flagged heks must be named

with the as onstrut. Failed �agged heks do not stop exeution. Instead suessful �agged heks

are reorded under their name, for herd7 mahinery to handle �agged exeutions later. Flagged heks are

useful for models that de�ne onditions over exeutions that impat the semantis of the whole program.

This is typially the ase of data raes. Let us assume that some relation rae has been de�ned, suh that

an non-empty rae relation in some exeution would make the whole program unde�ned. We would then

write:

flag ~empty rae as undefined

Then, herd7 will indiate in its output that some exeution have been �agged as undefined.

Proedure de�nition and all

Proedures are similar to funtions exept that they have no results: the body of a proedure is a list of

instrutions and the proedure will be alled for the e�et of exeuting those instrutions. Intended usage

of proedures is to de�ne heks that are exeuted later. However, the body of a proedure may onsist in

any kind of instrutions. Notie that proedure alls an be named with the as keyword. The intention is

to ontrol the performane of proedure alls from the ommand line, exatly as for heks (see above).

As an example of proedure, one may de�ne the following unipro proedure with no arguments:

proedure unipro() =

let om = fr | rf | o in

ayli om | po

end

Then one an perform the ayliity hek (see previous setion) by exeuting the instrution:

all unipro()

As a result the exeution will stop if the ayliity hek fails, or ontinue otherwise.

Proedures are lexially soped as funtions are. Additionally, the bindings performed during the exeu-

tion of a proedure all are disarded when the proedure returns, all other e�ets performed (namely �ags

and shows) are retained.

Show (and unshow) diretives

The onstruts:

show id {, id} and unshow id {, id}

take (non-empty, omma separated) lists of identi�ers as arguments. The show onstrut adds the present

values of identi�ers for being shown in pitures. The unshow onstrut removes the identi�ers from shown

relations.

The more sophistiated onstrut

show expr as id

evaluates expr to a relation, whih will be shown in pitures with label id. Hene showid an be viewed as

a shorthand for showid asid

85

Iteration over sets

The forall iteration onstrut permits the iteration of heks (in fat of any kind of instrutions) over a

set. Syntax is:

forall

id

in

expr

do

instrutions

end

The expression expr must evaluate to a set S. Then, the list of instrutions instrutions is exeuted for all

bindings of the name id to some element of S. In pratie, as failed heks stop exeution, this amounts

to hek the onjuntion of the heks performed by instrutions for all the elements of S. Similarly to

proedure alls, the bindings performed during the exeution of an iteration are disarded at iteration ends,

all other e�ets performed are retained.

Candidate exeution extension

This onstrut permits the extension of the urrent andidate exeution by one binding. Syntax is with id from expr.

The expression expr is evaluated to a set S. Then the remainder of the model is exeuted for eah hoie of

element e in S in a ontext extended by a binding of the name id to e. An example of the onstrut usage

is desribed in Se. 12.3.

Model inlusion

The onstrut inlude "�lename " is interpreted as the inlusion of the model ontained in the �le whose

name is given as an argument to the inlude instrution. In pratie the list of intrutions de�ned by the

inluded model �le are exeuted. The string argument is delimited by double quotes �"�, whih, of ourse,

are not part of the �lename. Files are searhed aording to herd7 rules � see Se. 15.4.

Bell extensions

Users an attain more generiity in their models by de�ning a bell �le, as an addendum, or rather preamble,

to a at �le.

Enumerations

The enum onstrut de�nes a set of enumerated values or tags. Syntax is

enum id = tag1 || · · · || tagn

The onstrut has two main e�ets. It �rst de�nes the tags tag1, . . . , tagn. Notie that tags do not exist

before being de�ned, that is evaluating the expression tag is an error without a prior enum that de�nes

the tag tag. Tags are typed in the sense that they belong to the tag type id and that tags from di�erent

types annot be members of the same set. The seond e�et of the onstrut is to de�ne a set of tags id

as the set of all tags listed in the onstrut. That is, the enum onstrut performs the binding of id to

{tag1, . . . , tagn}.

Sopes are a speial ase of enumeration: the onstrut enum sopes must be used to de�ne hierarhial

models suh as Nvidia GPUs.

86

An enum sopes delaration must be paired with two funtions narrower and wider that implement the

hierarhy amongst sopes. For example:

enum sopes = 'disography || 'I || 'II || 'III || 'IV

let narrower(t) = math t with

|| 'disography -> {'I, 'II, 'III, 'IV}

end

let wider(t) = math t with

|| 'I -> 'disography

|| 'II -> 'disography

|| 'III -> 'disography

|| 'IV -> 'disography

end

Here we de�ne �ve sopes, where the �rst one, disography, is wider than all the other ones.

Instrutions

The prede�ned sets of events W, R, RMW, F, and B an be annotated with user-de�ned tags (see Se. 14.4).

The onstruts:

instrutions

id

[taglist℄

take the identi�er of a pre-de�ned set and a possibly empty, square braketed list of tags.

The primitive tag2instrs yields, given a tag 't, the set of instrutions bearing the annotation t that

was previously delared in an enumeration type.

The primitive tag2sope yields, given a tag 't, the relation between instrutions TODO

14.5 Models

model ::= model-omment instrution}

model-omment ::= id | string

A model is a list of instrution preeded by a small omment, whih an be either a name that follows herd7

onventions for identi�ers, or a string enlosed in double quotes �"�.

Models operate on andidate exeutions (see Se. 14.2), instrutions are exeuted in sequene, until one

instrution stops, or until the end of the instrution list. In that latter ase, the model aepts the exeution.

The aepted exeution is then passed over to the rest of herd7 engine, in order to ollet �nal states of

loations and to display pitures.

14.6 Primitives

TODO:

87

14.7 Library

Standard library

The standard library is a at �le stdlib.at whih all models inlude by default. It de�nes a a few

onvenient relations that are thus available to all models.

identi�er name desription

po-lo po restrited to the

same address

events are in po and touh the same address, namely

po ∩ lo

rfe external read-from read-from by di�erent threads, namely rf ∩ ext

rfi internal read-from read-from by the same thread, namely rf ∩ int

Coherene orders

For most models, a omplete list of ommuniation relations would also inlude o and fr. Those an be

de�ned by inluding the �le os.at (see Se. 12.4).

identi�er name desription

o oherene total order over writes to the same address

fr from-read links a read r to a write w′
o-after the write w from

whih r takes its value
oi, fri internal ommunia-

tions

ommuniation between events of the same thread

oe, fre external ommunia-

tions

ommuniation between events of di�erent threads

Notie that the internal and external sub-relations of o and fr are also de�ned.

Fenes

Fene relations denote the presene of a spei� fene (or barrier) in-between two events. Those an be

de�ned by inludin arhiteture spei� �les.

�le relations

x86fenes.at mfene, sfene, lfene

ppfenes.at syn, lwsyn, eieio, isyn, trlisyn

armfenes.at dsb, dmb, dsb.st, dmb.st, isb, trlisb

mipsfenes.at syn

aarh64fenes.at . . .

In other words, models for, say, ARM mahines should inlude the following instrution:

inlude "armfenes.at"

Notie that for the Power (PPC) (resp. ARM) arhiteture, an additional relation trlisyn (res.

trlisb) is de�ned. The relation trlisyn reads ontrol +isyn. It means that the branh to the

instrution that generates the seond event additionnaly ontains a isyn fene preeeding that instrution.

For referene, here is a possible de�nition of trlisyn:

let trlisyn = trl & (_ * ISYNC); po

One may de�ne all fene relations by inluding the �le fenes.at. As a result, fene relations that are

relevant to the arhiteture of the test being simulated are properly de�ned, while irrelevant fene relations

are the empty relation. This feature proves onvenient for writing generi models that apply to several

onrete arhitetures.

88

15 Usage of herd7

15.1 Arguments

The ommand herd7 handles its arguments like litmus7. That is, herd7 interprets its argument as �le names.

Those �les are either a single litmus test when having extension .litmus, or a list of �le names when pre�xed

by �.

15.2 Options

There are many ommand line options. We desribe the more useful ones:

General behaviour

-version Show version number and exit.

-libdir Show installation diretory and exit.

-v Be verbose, an be repeated to inrease verbosity.

-q Be quiet, suppress any diagnosti message.

-onf <name> Read on�guration �le name. Con�guration �les have a very simple syntax: a line �opt arg�

has the same e�et as the ommand-line option �-opt arg�.

-o <dest> Output �les into diretory <dest>. Notie that <dest> must exist. At the moment herd7 may

output one .dot �le per proessed test: the �le for test base.litmus is named base.dot. By default

herd7 does not generate .dot �les.

-suffix <suf> Change the name of .dot �les into basesu� .dot. Useful when several .dot �les derive from

the same test. Default is the empty string (no su�x).

-gv Fork the gv Postsript viewer to display exeution diagrams.

-evine Fork the evine doument viewer to display exeution diagrams. This option provides an alternative

to the gv viewer.

-dumpes <bool> Dump genererated event strutures and exit. Default is false. Event strutures will be

dumped in a .dot �le whose name is determined as usual � See options -o and -suffix above.

Optionally the event strutures an be displayed with the -gv option.

-unroll <int> The setting -unroll n performs bakwards jumps n times. This is a workaround for one

of herd7 main limitation: herd7 does not really handle loops. Default is 2.

-hexa <bool> Print numbers in hexadeimal. Default is false (numbers are printed in deimal).

Engine ontrol The main purpose of herd7 is to run tests on top of memory models. For a given test,

herd7 performs a three stage proess:

1. Generate andidate exeutions.

2. For eah andidate exeution, run the model. The model may rejet or aept the exeution.

3. For eah andidate exeution that the model aepts, reord observed loations and, if so instruted,

a diagram of the exeution.

We now desribe options that ontrol those three stages.

89

-model (av12|minimal|unipro|<filename>.at) Selet model, this option aept one tag or one �le

name with extension .at. Tags instrut herd7 to selet an internal model, while �le names are read

for a model de�nition. Doumented model tags are:

• av12, the model of [4℄ (Power);

• minimal, the minimal model that allows all exeutions;

• unipro, the unipro model that heks single-thread orretness.

In fat, herd7 aepts potentially in�nitely many models, as models an given in text �les in an

adho language desribed in Se. 14. The herd7 distribution inludes several suh models: herd.at,

minimal.at, unipro.at and x86tso.at are text �le versions of the homonymous internal models,

but may produe pitures that show di�erent relations. Model �les are searhed aording to the

same rules as on�guration �les. Some arhitetures have a default model: arm.at model for ARM,

pp.at model for PPC, x86tso.at for X86, and mips-pso.at for MIPS.

-through (all|invalid|none) Let additional exeutions reah the �nal stage of herd7 engine. This option

permits users to generate pitures of forbidden exeutions, whih are otherwise rejeted at an early

stage of herd7 engine � see Se. 13.2. Namely, the default �none� let only valid (aording to the

ative model) exeutions through. The behaviour of this option di�ers between internal and text �le

models:

• For internal models: the tag all let all exeutions go through; while the tag invalid will rejet

exeutions that violate unipro, while letting other forbidden exeution go through.

• Text �le models: the tags all and invalid let all exeutions go through. For suh models,

a more preise ontrol over exeutions that reah herd7 �nal phase an be ahieved with the

option -skiphek � see next option.

Default is none.

-skipheks <name 1,...,namen> This option applies to text �le models. It instruts herd7 to ignore the

outomes of the given heks. For the option to operate, heks must be named in the model �le with

the as name onstrut � see Se. 14.4. Notie that the arguments to -skiphek options umulate.

That is, �-skiphek name1 -skiphek name2� ats like �-skiphek name1,name2�.

-stritskip <bool> Setting this option (-stritskip true), will hange the behaviour of the previous

option -skiphek: it will let exeutions go through when the skipped heks yield false and the

unskipped heks yield true. This option omes handy when one want to observe the exeutions that

fail one (or several) heks while passing others. Default is false.

-optae <bool> Optimise the axiomati andidate exeution stage. When enabled by -optae true, herd7

does not generate andidate exeutions that fail the unipro test. The default is �true� for internal

models (exept the minimal model), and �false� for text �le models. Notie that -model unipro.at

and -model minimal.at -optae true should yield idential results, the seond being faster. Set-

ting -optae true an lower the exeution time signi�antly, but one should pay attention not to

design models that forget the unipro ondition.

-show (prop|neg|all|ond|wit|none) Selet exeution diagrams for piture display and generation. Ex-

eution diagrams are shown aording to the �nal ondition of test. The �nal ondition is a quanti�ed

boolean proposition exists p, ~exists p, or forall p. The semantis of reognised tags is as follows:

• prop Piture exeutions for whih p is true.

• neg Piture exeutions for whih p is false.

• all Piture all exeutions.

90

• ond Piture exeutions that validate the ondition, i.e. p is true for exists and forall, and

false for ~exists.

• wit Piture �interesting� exeutions, i.e. p is true for exists and ~exists, and false for forall.

• none Piture no exeution.

Default is none.

-initwrites <bool> Represent init writes as plain write events, default is false exept for spei�ally

tagged generi models � see �Model options� in Se. 14.5.

Disard some observations Those options intentionally omit some of the �nal states that herd7 would

normally generate.

-speedhek (false|true|fast) When enabled by -speedhek true or -speedhek fast, attempt to

settle the test ondition. That is, herd7 will generate a subset of exeutions (those named �interesting�

above) in plae of all exeutions. With setting -speedhek fast, herd7 will additionally stop as soon

as a ondition exists p is validated, and as soon as a ondition ~exists p or forall p is invalidated.
Default is false.

-nshow <int> Stop one <int> pitures have been olleted. Default is to ollet all (spei�ed, see option

-show) pitures.

Control dot pitures These options ontrol the ontent of DOT images.

We �rst desribe options that at at the general level.

-graph (luster|free|olumns) Selet main mode for graphs. See Se. 13.1. The default is luster.

-dotmode (plain|fig) The setting -dotmode fig produes output that inludes the proper esape se-

quene for translating .dot �les to .fig �les (e.g. with dot -Tfig...). Default is plain.

-dotom (dot|neato|iro) Selet the ommand that formats graphs displayed by the -gv option. The

default is dot for the luster and free graph modes, and neato for the olumns graph mode.

-showevents (all|mem|noregs) Control whih events are pitured:

• all Piture all events.

• mem Piture memory events.

• noregs Piture all events exept register events, i.e. memory, fenes and branh events.

Default is noregs.

-showinitwrites <bool> Show initial write events (when existing, see option -initwrites) in pitures. De-

fault is true.

-mono <bool> The setting -mono true ommands monohrome pitures. This option ats upon default

olor seletion. Thus, it has no e�et on olors given expliitely with the -edgeattr option.

-sale <float> Global sale fator for graphs in olumns mode. Default is 1.0.

-xsale <float> Global sale fator for graphs in olumns mode, x diretion. Default is 1.0.

-ysale <float> Global sale fator for graphs in olumns mode, y diretion. Default is 1.0.

-showthread <bool> Show thread numbers in �gures. In luster mode where the events of a thread are

lustered, thread luster have a label. In free mode po edges are su�xed by a thread number. In

olumns mode, olumhs have a header node that shows the thread number. Default is true.

91

-texmaros <bool> Use latex ommands in some text of pitures. If ativated (-showthread true),

thread numbers are shown as \myth{n}. Assembler instrutions are loations in nodes are argu-

ment to an \asm ommand. It user responsability to de�ne those ommands in their L

A

T

E

X dou-

ments that inlude the pitures. Possible de�nitions are \newommand{\myth}[1℄{Thread~#1} and

\newommand{\asm}[1℄{\texttt{#1}}. Default is false.

A few options ontrol piture legends.

-showlegend <bool> Add a legend to pitures. By default legends show the test name and a omment from

the exeuted model. This omment is the �rst item of model syntax � see Se 14.5. Default is true.

-showkind <bool> Show test kind in legend. The kind derive from the quanti�er of test �nal ondition, kind

Allow being exists, kind Forbid being ~exists, and kind Require being forall. Default is false.

-shortlegend <bool> Limit legend to test name. Default is false.

A few options ontrol what is shown in nodes and on their sizes, i.e. on how events are pitured.

-squished <bool> The setting -squished true drastially limits the information displayed in graph nodes.

This is usually what is wanted in modes free and olumns. Default is false.

-fixedsize <bool> This setting is meaningfull in olumns graph mode and for squished nodes. When set

by -fixedsize true it fores node width to be 65% of the spae between olumns. This may sometime

yield a nie edge routing. Default is false

-extrahars <float> This setting is meaningful in olumns graph mode and for squished nodes. When

the size of nodes is not �xed (i.e. -fixedsize false and default), herd7 omputes the width of nodes

by ounting araters in node labels and saling the result by the font size. The setting -extrahars v
ommands adding the value v before saling. Negative values are of ourse aepted. Default is 0.0.

-showobserved <bool> Highlight observed memory read events with stars �*�. A memory read is observed

when the value it reads is stored in a register that appears in �nal states. Default is false.

-brakets <bool> Show brakets around loations. Default is false.

Then we list options that o�er some ontrol on whih edges are shown. We reall that the main ontrols

over the shown and unshown edges are the show and unshow diretives in model de�nitions � see Se. 14.4.

However, some edges an be ontroled only with options (or on�guration �les) and the -unshow option

proves onvenient.

-showpo <bool> Show program order (po) edges. Default is true. Default is false.

-showinitrf <bool> Show read-from edges from initial state. Default is false.

-showfinalrf <bool> Show read-from edges to the �nal state, i.e show the last store to loations. Default

is false. i.e show the last store to loations. Default is false.

-showfr <bool> Show from-read edges. Default is true.

-doshow <name 1,...,namen> Do show edges labelled with name1,. . . ,namen. This setting applies when

names are bound in model de�nition.

-unshow <name 1,...,namen> Do not show edges labelled with name1,. . . ,namen. This setting applies at

the very last momement and thus anels any show diretive in model de�nition and any -doshow

ommand line option.

92

Other options o�er some ontrol over some of the attributes de�ned in Graphviz software doumentation.

Notie that the ontrolled attributes are omitted from DOT �les when no setting is present. For instane

in the absene of a -spline <tag> option, herd7 will generate no de�nition for the splines attribute thus

resorting to DOT tools defaults. Most of the following options aept the none argument that restores their

default behaviour.

-splines (spline|true|line|false|polyline|ortho|urved|none) De�ne the value of the splines at-

tribute. Tags are repliated in output �les as the value of the attribute, exept for none.

-margin <float|none> Spei�es the margin attribute of graphs.

-pad <float|none> Spei�es the pad attribute of graphs.

-sep <string|none> Spei�es the sep attribute of graphs. Notie that the argument is an arbitray string,

so as to allow DOT general syntax for this attribute.

-fontname <string|none> Spei�es the graph fontname attribute.

-fontsize <int|none> Spei�es the fontsize attribute n of all text in the graph.

-edgefontsizedelta <int> option -edgefontsizedelta m sets the fontsize attributes of edges to n+m,

where n is the argument to the -fontsize option. Default is 0. This option has no e�et if fontsize is

unset.

-penwidth <float|none> Spei�es the penwidth attribute of edges.

-arrowsize <float|none> Spei�es the arrowsize attribute of edges.

-edgeattr <label,attribute,value> Give value value to attribute attribute of all edges labelled label.

This powerful option permits alternative styles for edges. For instane, the ghb edges of the di-

agrams of this doument are thik purple (blueviolet) arrows thanks to the settings: -edgeattr

ghb,olor,blueviolet -edgeattr ghb,penwidth,3.0 -edgeattr ghb,arrowsize,1.2. Notie that

the settings performed by the -edgeattr option override other settings. This option has no default.

Change input Those options are the same as the ones of litmus7 � see Se. 4.

-names <file> Run herd7 only on tests whose names are listed in <file>.

-rename <file> Change test names.

-kinds <file> Change test kinds. This amonts to hanging the quanti�er of �nal onditions, with kind

Allow being exists, kind Forbid being ~exists and kind Require being forall.

-onds <file> Change the �nal ondition of tests. This is by far the most useful of these options: in

ombination with option -show prop it permits a �ne grain seletion of exeution pitures.

15.3 Con�guration �les

The syntax of on�guration �les is minimal: lines �key arg� are interpreted as setting the value of parame-

ter key to arg. Eah parameter has a orresponding option, usually -key, exept for the single letter option

-v whose parameter is verbose.

As ommand line option are proessed left-to-right, settings from a on�guration �le (option -onf) an

be overridden by a later ommand line option. Con�guration �les will be used mostly for ontroling pitures.

Some on�guration �les are are present in the distribution. As an example, here is the on�guration �le

apoil.fg, whih an be used to display images in free mode.

93

#Main graph mode

graph free

#Show memory events only

showevents memory

#Minimal information in nodes

squished true

#Do not show a legend at all

showlegend false

The on�guration above is ommented with line omments that starts with �#�. The above on�guration

�le omes handy to eye-proof model output, even for relatively omplex tests, suh as IRIW+lwsyns and

IRIW+syns:

% herd7 -onf apoil.fg -show prop -gv IRIW+lwsyns.litmus

% herd7 -through invalid -onf apoil.fg -show prop -gv IRIW+syns.litmus

We run the two tests on top of the default model that omputes, amongst others, a prop relation. The model

rejets exeutions with a yli prop. One an then see that the relation prop is ayli for IRIW+lwsyns

and yli for IRIW+syns:

94

iy:Wy=0

: Ry=0

d: Wy=1

ix:Wx=0

a: Wx=1

f: Rx=0

b: Rx=1

e: Ry=1

rf

o

o

rf

rf

po:1 lwsyn

fr

rf

po:3 lwsyn

fr

95

iy:Wy=0

: Ry=0

d: Wy=1

ix:Wx=0

a: Wx=1

f: Rx=0

b: Rx=1

e: Ry=1

rf

o

o

rf

rf

po:1 syn

fr

rf

po:3 syn

fr

Notie that we used the option -through invalid in the ase of IRIW+syns as we would otherwise have

no image.

15.4 File searhing

Con�guration and model �les are searhed �rst in the urrent diretory; then in any diretory spei�ed by

setting the shell environment variable HERDDIR; and then in herd installation diretory, whih is de�ned while

ompiling herd7.

96

Part IV

Some examples

In the following experiment reports we desribe both how we generate tests and how we run them on various

mahines under various onditions.

16 Running several tests at one, hanging ritial parameters

In this setion we desribe an experiment on hanging the stride (f Se. 2.1). This usage pattern applies to

many situations, where a series of test is ompiled one and run many times under hanging onditions.

We assume a diretory tst-x86, that ontains a series of litmus tests and an index �le �all. Those

tests where produed by the diy7 tool (see Se. 6). They are two thread tests that exerise various relaxed

behaviour of x86 mahines. More spei�ally, diy7 is run as �diy -onf X.onf�, where X.onf is the

following on�guration �le

-arh X86

-name X

-safe Rfe,Fre,Wse,PodR*,PodWW,MFenedWR

-relax PodWR,[Rfi,PodRR℄

-mix true

-mode ritial

-size 5

-npros 2

As desribed in Se. 10.5, diy7 will generate all ritial yles of size at most 5, built from the given lists

of andidate relaxations, spanning other two threads, and inluding at least one ourrene of PodWR,

[R�,PodRR℄ or both. In e�et, as x86 mahines follow the TSO model that relaxes write to read pairs, all

produed tests should a priori validate.

We test some x86-64 mahine, using the following x86-64.fg litmus7 on�guration �le:

#Mahine/OS speifiation

os = linux

word = w64

#Test parameters

size_of_test = 1000

number_of_run = 10

memory = diret

stride = 1

The number of available logial proessors is unspei�ed, it thus defaults to 1, leading to running one instane
of the test only (f parameter a in Se. 2.1)

We invoke litmus7 as follows, where run is a pre-existing empty diretory:

% litmus7 -mah x86-64 -o run tst-x86/�all

The diretory run now ontains C-soure �les for the tests, as well as some additional �les:

% ls run

omp.sh outs. README.txt utils. X000. X002. X004. X006.

Makefile outs.h run.sh utils.h X001. X003. X005.

One noties a short README.txt �le, two sripts to ompile (om.sh) and run the tests (run.sh), and a

Makefile. We use the latter to build test exeutables:

97

% d run

% make -j 8

g -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -O2 - outs.

g -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -O2 - utils.

g -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -S X000.

...

g -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -o X005.exe outs.o utils.o X005.s

g -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -o X006.exe outs.o utils.o X006.s

rm X005.s X004.s X006.s X000.s X001.s X002.s X003.s

This builds the seven tests X000.exe to X006.exe. The size parameters (size_of_test = 1000 and

number_of_run = 10) are rather small, leading to fast tests:

% ./X000.exe

Test X000 Allowed

Histogram (2 states)

5000 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

5000 :>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

No

...

Condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) is NOT validated

...

Observation X000 Never 0 10000

Time X000 0.01

However, the test fails, in the sense that the relaxed outome targeted by X000.exe is not observed, as an

be seen quite easily from the �Observation Never...� line above .

To observe the relaxed outome, it happens it su�es to hange the stride value to 2:

% ./X000.exe -st 2

Test X000 Allowed

Histogram (3 states)

21 *>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=0;

4996 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

4983 :>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

Ok

...

Condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) is validated

...

Observation X000 Sometimes 21 9979

Time X000 0.00

We easily perform a more omplete experiment with the stride hanging from 1 to 8, by running the

run.sh sript, whih transmits its ommand line options to all test exeutables:

% for i in $(seq 1 8)

> do

> sh run.sh -st $i > X.0$i

> done

Run logs are thus saved into �les X.01 to X.08. The following table summarises the results:

98

X.01 X.02 X.03 X.04 X.05 X.06 X.07 X.08

X000 0/10k 21/10k 0/10k 17/10k 0/10k 19/10k 2/10k 40/10k

X001 0/10k 108/10k 0/10k 77/10k 2/10k 29/10k 0/10k 29/10k

X002 0/10k 2/10k 0/10k 6/10k 0/10k 7/10k 0/10k 5/10k

X003 0/10k 4/10k 2/10k 1/10k 0/10k 5/10k 0/10k 11/10k

X004 0/10k 4/10k 0/10k 33/10k 0/10k 10/10k 0/10k 8/10k

X005 0/10k 1/10k 0/10k 0/10k 0/10k 5/10k 0/10k 4/10k

X006 0/10k 8/10k 0/10k 9/10k 0/10k 11/10k 1/10k 12/10k

For every test and stride value ells show how many times the targeted relaxed outome was observed/total

number of outomes. One sees that even stride value perfom better � notieably 2, 6 and 8. Moreover

variation of the stride parameters permits the observation of the relaxed outomes targeted by all tests.

We an perform another, similar, experiment hanging the s (size_of_test) and r (number_of_run)

parameters. Notie that the respetive default values of s and r are 1000 and 10, as spei�ed in the

x86-64.fg on�guration �le. We now try the following settings:

% sh run.sh -a 16 -s 10 -r 10000 > Y.01

% sh run.sh -a 16 -s 100 -r 1000 > Y.02

% sh run.sh -a 16 -s 1000 -r 100 > Y.03

% sh run.sh -a 16 -s 10000 -r 10 > Y.04

% sh run.sh -a 16 -s 100000 -r 1 > Y.05

The additional -a 16 ommand line option informs test exeutable to use 16 logial proessors, hene running
8 instanes of the �X� tests onurrently, as those tests all are two thread tests. This tehnique of �ooding

the tested mahine obviously yields better ressoure usage and, aording to our experiene, favours outome

variability.

The following table summarises the results:

Y.01 Y.02 Y.03 Y.04 Y.05

X000 2.3k/800k 602/800k 465/800k 551/800k 297/800k

X001 2.9k/800k 632/800k 774/800k 667/800k 315/800k

X002 633/800k 55/800k 5/800k 7/800k 0/800k

X003 1.2k/800k 182/800k 152/800k 390/800k 57/800k

X004 2.4k/800k 974/800k 1.5k/800k 2.4k/800k 1.6k/800k

X005 239/800k 21/800k 8/800k 0/800k 1/800k

X006 912/800k 129/800k 102/800k 143/800k 14/800k

Again, we observe all targeted relaxed outomes. In fat, x86 relaxations are relatively easy to observe on

our 16 logial ore mahine.
Another test statisti of interest is e�ieny, that is the number of targeted outomes observed per

seond:

Y.01 Y.02 Y.03 Y.04 Y.05

X000 285 2.2k 6.6k 9.2k 4.2k

X001 366 2.4k 13k 11k 5.2k

X002 78 212 71 140

X003 150 650 2.5k 7.8k 950

X004 288 3.7k 25k 59k 32k

X005 28 72 114 17

X006 118 461 1.7k 2.9k 280

As we an see, although the setting -s 10 -r 10000 yields the most relaxed outomes, it may not be

onsidered as the most e�ient. Moreover, we see that tests X002 and X005 look more hallenging than

others.

Finally, it may be interesting to lassify the �X� tests:

99

% myles7 �all | lassify7 -arh X86

R

X003 -> R+po+rfi-po : PodWW Wse Rfi PodRR Fre

X006 -> R : PodWW Wse PodWR Fre

SB

X000 -> SB+rfi-pos : Rfi PodRR Fre Rfi PodRR Fre

X001 -> SB+rfi-po+po : Rfi PodRR Fre PodWR Fre

X002 -> SB+mfene+rfi-po : MFenedWR Fre Rfi PodRR Fre

X004 -> SB : PodWR Fre PodWR Fre

X005 -> SB+mfene+po : MFenedWR Fre PodWR Fre

One sees that two thread non-SC tests for x86 are basially of two kinds.

17 Cross ompiling, a�nity experiment

In this setion we desribe how to produe the C soures of tests on a mahine, while running the tests on

another. We also desribe a sophistiated a�nity experiment.

We assume a diretory tst-pp, that ontains a series of litmus tests and an index �le �all. Those tests

where produed by the diyross7 tool. They illustrate variations of the lassial IRIW test. More spei�ally,

the IRIW variations are produed as follows (see also Se. 8):

% mkdir tst-pp

% diyross7 -name IRIW -o tst-pp Rfe PodRR,DpAddrdR,LwSyndRR,EieiodRR,SyndRR Fre Rfe PodRR,DpAddrdR,LwSyndRR,EieiodRR,SyndRR Fre

Generator produed 15 tests

We target a Power7 mahine desribed by the on�guration �le power7.fg:

#Mahine/OS speifiation

os = linux

word = w64

smt = 4

smt_mode = seq

#Test parameters

size_of_test = 1000

number_of_run = 10

avail = 0

memory = diret

stride = 1

affinity = inr0

One may notie the SMT (Simultaneaous Multi-Threading) spei�ation: 4-ways SMT (smt=4), logial

proessors pertaining to the same ore being numbered in sequene (smt_mode = seq) � that is, logial

proessors from the �rst ore are 0, 1 ,2 and 3; logial proessors from the seond ore are 4, 5 ,6 and 7; et.
The SMT spei�ation is neessary to enable ustom a�nity mode (see Se. 2.2.4).

One may also notie the spei�ation of 0 available logial proessors (avail=0). As a�nity support is

enabled (affinity=inr0), test exeutables will �nd themselves the number of logial proessors available

on the target mahine.

We ompile tests to C-soures paked in arhive a.tar and upload the arhive to the target power7

mahine as follows:

% litmus7 -mah power7 -o a.tar tst-pp/�all

% sp a.tar power7:

Then, on power7 we unpak the arhive and produe exeutable tests as follows:

100

power7% tar xmf a.tar

power7% make -j 8

g -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -O2 - affinity.

g -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -O2 - outs.

g -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -S IRIW+eieios.

...

As a starter, we an hek the e�et of available logial proessor detetion and ustom a�nity ontrol

(option +a) by passing the ommand line option -v to one test exeutable, for instane IRIW.exe:

power7% ./IRIW.exe -v +a

./IRIW.exe -v +a

IRIW: n=8, r=10, s=1000, st=1, +a, p='0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31'

thread alloation:

[23,22,3,2℄ {5,5,0,0}

[7,6,15,14℄ {1,1,3,3}

[11,10,5,4℄ {2,2,1,1}

[21,20,27,26℄ {5,5,6,6}

[9,8,25,24℄ {2,2,6,6}

[31,30,13,12℄ {7,7,3,3}

[19,18,29,28℄ {4,4,7,7}

[1,0,17,16℄ {0,0,4,4}

...

We see that our mahine power7 features 32 logial proessors numbered from 0 to 31 (f p=... above)

and will thus run n=8 onurrent instanes of the 4 thread IRIW test. Additionally alloation of threads

to logial proessors is shown: here, the four threads of the test are partitioned into two groups, whih are

sheduled to run on di�erent ores. For example, threads 0 and 1 of the �rst instane of the test will run on

logial proessors 23 and 22 (ore 5); while threads 2 and 3 will run on logial proessors 3 and 2 (ore 0).
Our experiment onsists in running all tests with a�nity inrement (see Se. 2.2.1) being from 0 and

then 1 to 8 (option -i i), as well as in random and ustom a�nity mode (options +ra and +a):

power7% for i in $(seq 0 8)

> do

> sh run.sh -i $i > Z.0$i

> done

power7% sh run.sh +ra > Z.0R

power7% sh run.sh +a > Z.0C

The following table summarises the results, with X meaning that the targeted relaxed outome is observed:

101

Z.00 Z.01 Z.02 Z.03 Z.04 Z.05 Z.06 Z.07 Z.08 Z.0C Z.0R

IRIW X X X X X X X X X

IRIW+addr+po X X X X X

IRIW+addrs X X X

IRIW+eieio+addr X X X

IRIW+eieio+po X X X

IRIW+eieios X X X X

IRIW+lwsyn+addr X X X

IRIW+lwsyn+eieio X X X

IRIW+lwsyn+po X X X X X

IRIW+lwsyns X X

IRIW+syn+addr X X

IRIW+syn+eieio X X

IRIW+syn+lwsyn X X

IRIW+syn+po X X X X X X

IRIW+syns

On sees that all possible relaxed outomes shows up with proper a�nity ontrol. More preisely, setting the

a�nity inrement to 2 or resorting to ustom a�nity result in the same e�et: the �rst two threads of the

test run on one ore, while the last two threads of the test run on a di�erent ore. As demonstrated by the

experiment, this alloation of test threads to ores su�es to favour relaxed outomes for all tests exept for

IRIW+syns, where the syn fenes forbid them.

18 Cross running, testing low-end devies

Together litmus7 options -g and -linkopt permit using a C ross ompiler. For instane, assume that

litmus7 runs on mahine A and that rossg, a ross ompiler for mahine C, is available on mahine B.
Then, the following sequene of ommands an be used to test mahine C:

A% litmus7 -g rossg -linkopt -stati -o C-files.tar ...

A% sp C-files.tar B:

B% tar xf C-files.tar

B% make

B% tar f /tmp/C-ompiled.tar .

B% sp /tmp/C-ompiled.tar C:

C% tar xf C-ompiled.tar

C% sh run.sh

Alternatively, using option -rossrun C, one an avoid opying the arhive C-ompiled.tar to mahine C:

A% litmus7 -rossrun C -g rossg -linkopt -stati -o C-files.tar ...

A% sp C-files.tar B:

B% tar xf C-files.tar

B% make

B% sh run.sh

More spei�ally, option -rossrun C instruts the run.sh sript to upload exeutables individually to

mahine C, just before running them. Notie that exeutables are removed from C one run.

We illustrate the rossrun feature by testing LB variations on an ARM-based Tegra3 (4 ores) tablet.

Test LB (load-bu�ering) exerises the following �ausality� loop:

102

a: Rx=1

b: Wy=1

: Ry=1

d: Wx=1

po

rf

po

rf

That is, thread 0 reads the values stored to loation x by thread 1, thread 1 reads the values stored to

loation y by thread 0, and both threads read �before� they write.

We shall onsider tests with varying interpretations of �before�: the write may simply follow the read in

program order (po in test names), may depend on the read (data and addr), or they may be some fene

in-betweeen (isb and dmb). We �rst generate tests tst-armwith diyross7:

% mkdir tst-arm

% diyross7 -arh ARM -name LB -o tst-arm PodRW,DpDatadW,DpCtrldW,ISBdRW,DMBdRW Rfe PodRW,DpDatadW,DpCtrldW,ISBdRW,DMBdRW Rfe

Generator produed 15 tests

We use the following, tegra3.fg, on�guration �le:

#Tegra 3

size_of_test = 5k

number_of_run = 200

avail = 4

memory = diret

#Cross ompilation

g = arm-linux-gnueabi-g

opts = -marh=armv7-a -O2

linkopt = -stati

Notie the �ross-ompilation� setion: the name of the g ross-ompiler is arm-linux-gnueabi-g, while

the adequate version of the target ARM variant and stati linking are spei�ed.

We ompile the tests from litmus soure �les to C soure �les in diretory TST as follows:

% mkdir TST

% litmus7 -mah tegra3 -rossrun app_81�wifi-auth-188153:2222 tst-arm/�all -o TST

The extra option -rossrun app_81�wifi-auth-188153:2222 spei�es the address to log onto the tablet

by ssh, whih is onneted on a loal WiFi network and runs a ssh daemon that listens on port 2222.
We ompile to exeutables and run them as as follows:

% d TST

% make

arm-linux-gnueabi-g -Wall -std=gnu99 -marh=armv7-a -O2 -pthread -O2 - outs.

arm-linux-gnueabi-g -Wall -std=gnu99 -marh=armv7-a -O2 -pthread -O2 - utils.

arm-linux-gnueabi-g -Wall -std=gnu99 -marh=armv7-a -O2 -pthread -S LB.

...

% sh run.sh > ARM-LB.log

It is important to notie that the shell sript run.sh runs on the loal mahine, not on the remote tablet.

Eah test exeutable is opied (by using sp) to the tablet, runs there and is deleted (by using ssh), as an

be seen with sh �-x� option:

% sh -x run.sh 2>&1 >ARM-LB.log | grep -e sp -e ssh

+ sp -P 2222 -q ./LB.exe app_81�wifi-auth-188153:

+ ssh -p 2222 -q -n app_81�wifi-auth-188153 ./LB.exe -q && rm ./LB.exe

103

+ sp -P 2222 -q ./LB+data+po.exe app_81�wifi-auth-188153:

+ ssh -p 2222 -q -n app_81�wifi-auth-188153 ./LB+data+po.exe -q && rm ./LB+data+po.exe

...

Experiment results an be extrated from the log �le quite easily, by reading the �Observation� information

from test output:

% grep Observation ARM-LB.log

Observation LB Sometimes 1395 1998605

Observation LB+data+po Sometimes 360 1999640

Observation LB+trl+po Sometimes 645 1999355

Observation LB+isb+po Sometimes 1676 1998324

Observation LB+dmb+po Sometimes 18 1999982

Observation LB+datas Never 0 2000000

Observation LB+trl+data Never 0 2000000

Observation LB+isb+data Sometimes 654 1999346

Observation LB+dmb+data Never 0 2000000

Observation LB+trls Never 0 2000000

Observation LB+isb+trl Sometimes 1143 1998857

Observation LB+dmb+trl Never 0 2000000

Observation LB+isbs Sometimes 2169 1997831

Observation LB+dmb+isb Sometimes 178 1999822

Observation LB+dmbs Never 0 2000000

What is observed (Sometimes) or not (Never) is the ourene of the non-SC behaviour of tests. All tests

have the same struture and the observation of the non-SC behaviour an be interpreted as some read not

being �before� the write by the same thread. This situation ours for plain program order (plain test LB

and po variations) and for the isb fene.

Referenes

[1℄ J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fenes in Weak Memory Models. In CAV, 2010.

[2℄ Intel 64 Arhiteture Memory Ordering White Paper, August 2007.

[3℄ L. Lamport. How to make a orret multiproess program exeute orretly on a multiproessor. IEEE

Trans. Comput., 46(7):779�782, 1979.

[4℄ Sela Mador-Haim, Lu Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Sott Owens, Ra-

jeev Alur, Milo Martin, Peter Sewell, and Derek Williams. An axiomati memory model for Power

multiproessors. In CAV, 2012.

[5℄ Dennis Shasha and Mar Snir. E�ient and orret exeution of parallel programs that share memory.

ACM Trans. Program. Lang. Syst., 10(2):282�312, 1988.

104

