
A don’t (diy) tutorial

Version 5.00

June 5, 2012

diy is a tool suite for testing shared memory models. We provide three tools, litmus (Part I) for running
tests, diy (Part II) for producing tests from concise specifications. In Part III we describe a few concrete
experiments, illustrating frequent usage patterns of diy generators and of litmus. Finally, (Part IV) we
describe our experimental dont tool for either checking the conformance of a machine to an architecture or
exploring the memory model of a given machine automatically.

The software is written in Objective Caml1, and released as sources. The web site of diy is http:

//diy.inria.fr/, authors can be contacted at diy-devel@inria.fr This software is released under the
terms of the Lesser GNU Public License.

Contents

I Running tests with litmus 4

1 A tour of litmus 4

1.1 A simple run . 4
1.2 Cross compilation . 5
1.3 Running several tests at once . 6

2 Controlling test parameters 7

2.1 Architecture of tests . 7
2.2 Affinity . 9

2.2.1 Introduction to affinity . 9
2.2.2 Study of affinity . 12
2.2.3 Advanced control . 13
2.2.4 Custom control . 15

2.3 Controlling executable files . 17
2.4 Timebase synchronisation mode . 18

3 Usage of litmus 20

II Generating tests 24

4 Preamble 24

4.1 Relaxation of Sequential Consistency . 24
4.2 Introduction to candidate relaxations . 25
4.3 More candidate relaxations . 26
4.4 Summary of simple candidate relaxations . 29

1http://caml.inria.fr/ocaml/

1

4.4.1 Communication candidate relaxations . 29
4.4.2 Program order candidate relaxations . 29
4.4.3 Fence candidate relaxations . 30

5 Testing candidate relaxations with diy 30

5.1 Principle . 30
5.2 Testing x86 . 31

6 Additional relaxations 32

6.1 Intra-processor dependencies . 32
6.2 Composite relaxations and cumulativity . 34

7 Test variations with diycross 35

8 Identifying coherence orders with observers 36

8.1 Simple observers . 36
8.2 More observers . 37

8.2.1 Fences and loops in observers . 37
8.2.2 Local observers . 37
8.2.3 Performance of observers . 39

8.3 Three stores or more . 39

9 Command usage 40

9.1 A note on test names . 40
9.1.1 Family names . 40
9.1.2 Descriptive names for variants . 41

9.2 Common options . 42
9.3 Usage of diyone . 43
9.4 Usage of diycross . 43
9.5 Usage of diy . 44
9.6 Usage of readRelax . 45

10 Additional tools: extracting cycles and classification 46

10.1 Usage of mcycles . 47
10.2 Usage of classify . 47

III Some examples 48

11 Running several tests at once, changing critical parameters 48

12 Cross compiling, affinity experiment 51

13 Cross running, testing low end devices 53

IV Automating the testing process 56

14 Preamble 56

2

15 A tour of dont 56

15.1 Checking conformance . 56
15.2 Checking non-conformance . 56
15.3 Automatically exploring the memory model exhibited by a machine 58

16 Usage of dont 60

16.1 Command-line options . 60
16.2 Configuration files . 60

3

Part I

Running tests with litmus

Traditionally, a litmus test is a small parallel program designed to exercise the memory model of a parallel,
shared-memory, computer. Given a litmus test in assembler (X86, Power or ARM) litmus runs the test.

Using litmus thus requires a parallel machine, which must additionally feature gcc and the pthreads
library. At the moment, litmus is a prototype and has numerous limitations (recognised instructions, limited
porting). Nevertheless, litmus should accept all tests produced by the companion diy tool and has been
successfully used on Linux, MacOS and on AIX.

The authors of litmus are Luc Maranget and Susmit Sarkar. The present litmus is inspired from a proto-
type by Thomas Braibant (INRIA Rhône-Alpes) and Francesco Zappa Nardelli (INRIA Paris-Rocquencourt).

1 A tour of litmus

1.1 A simple run

Consider the following (rather classical, store buffering) SB.litmus litmus test for X86:

X86 SB

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EAX,[x] ;

exists (0:EAX=0 /\ 1:EAX=0)

A litmus test source has three main sections:

1. The initial state defines the initial values of registers and memory locations. Initialisation to zero may
be omitted.

2. The code section defines the code to be run concurrently — above there are two threads. Yes we know,
our X86 assembler syntax is a mistake.

3. The final condition applies to the final values of registers and memory locations.

Run the test by:

% litmus SB.litmus

%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for SB.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%

X86 SB

"Fre PodWR Fre PodWR"

{x=0; y=0;}

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EAX,[x] ;

exists (0:EAX=0 /\ 1:EAX=0)

Generated assembler

4

#START _litmus_P1

movl $1,(%rcx)

movl (%rsi),%eax

#START _litmus_P0

movl $1,(%rsi)

movl (%rcx),%eax

Test SB Allowed

Histogram (4 states)

2 :>0:EAX=0; 1:EAX=0;

499959:>0:EAX=1; 1:EAX=0;

500019:>0:EAX=0; 1:EAX=1;

20 :>0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 2, Negative: 999998

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

Observation SB Sometimes 2 999998

Time SB 0.74

...

The litmus test is first reminded, followed by actual assembler — the machine is a 64 bits one, in-line address
references disappeared, registers may change, and assembler syntax is now more familiar. The test has run
one million times, producing one million final states, or outcomes for the registers EAX of threads P0 and P1.
The test run validates the condition, with 2 positive witnesses.

1.2 Cross compilation

With option -o <name.tar>, litmus does not run the test. Instead, it produces a tar archive that contains
the C sources for the test.

Consider SB-PPC.litmus, a Power version of the previous test:

PPC SB-PPC

"Fre PodWR Fre PodWR"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r4) | lwz r3,0(r4) ;

exists (0:r3=0 /\ 1:r3=0)

Our target machine (ppc) runs MacOS, wich we specify with the -os option:

$ litmus -o /tmp/a.tar -os mac SB-PPC.litmus

$ scp /tmp/a.tar ppc:/tmp

Then, on the remote machine ppc:

5

ppc$ mkdir SB && cd SB

ppc$ tar xf /tmp/a.tar

ppc$ ls

Makefile comp.sh run.sh SB-PPC.c outs.c utils.c

Test is compiled by the shell script comp.sh (or by (Gnu) make, at user’s choice) and run by the shell script
run.sh:

ppc$ sh comp.sh

ppc$ sh run.sh

...

Test SB-PPC Allowed

Histogram (3 states)

1784 :>0:r3=0; 1:r3=0;

498564:>0:r3=1; 1:r3=0;

499652:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 1784, Negative: 998216

Condition exists (0:r3=0 /\ 1:r3=0) is validated

Hash=4edecf6abc507611612efaecc1c4a9bc

Observation SB-PPC Sometimes 1784 998216

Time SB-PPC 0.55

...

As we see, the condition validates also on Power. Notice that compilation produces an executable file,
SB-PPC.exe, which can be run directly, for a less verbose output.

1.3 Running several tests at once

Consider the additional test STFW-PPC.litmus:

PPC STFW-PPC

"Rfi PodRR Fre Rfi PodRR Fre"

{

0:r2=x; 0:r5=y;

1:r2=y; 1:r5=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) ;

lwz r4,0(r5) | lwz r4,0(r5) ;

exists

(0:r3=1 /\ 0:r4=0 /\ 1:r3=1 /\ 1:r4=0)

To compile the two tests together, we can give two file names as arguments to litmus:

$ litmus -o /tmp/a.tar -os mac SB-PPC.litmus STFW-PPC.litmus

Or, more conveniently, list the litmus sources in a file whose name starts with @:

$ cat @ppc

SB-PPC.litmus

6

STFW-PPC.litmus

$ litmus -o /tmp/a.tar -os mac @ppc

To run the test on the remote ppc machine, the same sequence of commands as in the one test case applies:

ppc$ tar xf /tmp/a.tar && make && sh run.sh

...

Test SB-PPC Allowed

Histogram (3 states)

1765 :>0:r3=0; 1:r3=0;

498741:>0:r3=1; 1:r3=0;

499494:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 1765, Negative: 998235

Condition exists (0:r3=0 /\ 1:r3=0) is validated

Hash=4edecf6abc507611612efaecc1c4a9bc

Observation SB-PPC Sometimes 1765 998235

Time SB-PPC 0.57

...

Test STFW-PPC Allowed

Histogram (4 states)

480 :>0:r3=1; 0:r4=0; 1:r3=1; 1:r4=0;

499560:>0:r3=1; 0:r4=1; 1:r3=1; 1:r4=0;

499827:>0:r3=1; 0:r4=0; 1:r3=1; 1:r4=1;

133 :>0:r3=1; 0:r4=1; 1:r3=1; 1:r4=1;

Ok

Witnesses

Positive: 480, Negative: 999520

Condition exists (0:r3=1 /\ 0:r4=0 /\ 1:r3=1 /\ 1:r4=0) is validated

Hash=92b2c3f6332309325000656d0632131e

Observation STFW-PPC Sometimes 480 999520

Time STFW-PPC 0.56

...

Now, the output of run.sh shows the result of two tests.

2 Controlling test parameters

Users can control some of testing conditions. Those impact efficiency and outcome variability.
Sometimes one looks for a particular outcome— for instance, one may seek to get the outcome 0:r3=1; 1:r3=1;

that is missing in the previous experiment for test SB-PPC. To that aim, varying test conditions may help.

2.1 Architecture of tests

Consider a test a.litmus designed to run on t threads P0,. . . , Pt−1. The structure of the executable a.exe
that performs the experiment is as follows:

• So as to benefit from parallelism, we run n = max(1, a/t) (integer division) tests concurrently on a
machine where a logical processors are available.

7

• Each of these (identical) tests consists in repeating r times the following sequence:

– Fork t (POSIX) threads T0, . . . Tt−1 for executing P0,. . . , Pt−1. Which thread executes which
code is either fixed, or changing, controlled by the launch mode. In our experience, the launch
mode has marginal impact.

In cache mode the Tk threads are re-used. As a consequence, t threads only are forked.

– Each thread Tk executes a loop of size s. Loop iteration number i executes the code of Pk (in
fixed mode) and saves the final contents of its observed registers in some arrays indexed by i.
Furthermore, still for iteration i, memory location x is in fact an array cell.

How this array cell is accessed depends upon the memory mode. In direct mode the array cell is
accessed directly as x[i]; as a result, cells are accessed sequentially and false sharing effects are
likely. In indirect mode the array cell is accessed by the means of a shuffled array of pointers; as
a result we observed a much greater variability of outcomes. Additionally, the increment of the
main loop (of size s) can be set to a value or stride different from the default of one. Running a
test several times with changing the stride value also proved quite effective in favouring outcome
variability.

If the random preload mode is enabled, a preliminary loop of size s reads a random subset of the
memory locations accessed by Pk. Preload have a noticeable effect.

The iterations performed by the different threads Tk may be unsynchronised, exactly synchronised
by a pthread based barrier, or approximately synchronised by specific code. Absence of synchro-
nisation may be interesting when t exceeds a. As a matter of fact, in this situation, any kind
of synchronisation leads to prohibitive running times. However, for a large value of parameter s
and small t we have observed spontaneous concurrent execution of some iterations amongst many.
Pthread based barriers are exact but they are slow and in fact offers poor synchronisation for
short code sequences. The approximate synchronisation is thus the preferred technique.

Starting from version 5.0, we provide a slightly altered user synchronisation mode: userfence,
which alters user mode by executing memory fences to speedup write propagation. The new
mode features overall better synchronisation, yielding dramatic improvements on some examples.
However, outcome variability may suffer from this more accurate synchronisation, hence user
mode remains the default.

More importantly, we provide an additional exact, timebase synchronisation technique: test
threads will first synchronise using polling barrier code, agree on a target timebase2 value and
then loop reading the timebase until it exceeds the target value. This technique yields very good
synchronisation and allows fine synchronisation tuning by assigning different starting delays to
different threads — see Sec. 2.4.

– Wait for the t threads to terminate and collect outcomes in some histogram like structure.

• Wait for the n tests to terminate and sum their histograms.

Hence, running a.exe produces n × r × s outcomes. Parameters n, a, r and s can first be set di-
rectly while invoking a.exe, using the appropriate command line options. For instance, assuming t = 2,
./a.exe -a 201 -r 10000 -s 1 and ./a.exe -n 1 -r 1 -s 1000000 will both produce one million out-
comes, but the latter is probably more efficient. If our machine has 8 cores, ./a.exe -a 8 -r 1 -s 1000000

will yield 4 millions outcomes, in a time that we hope not to exceed too much the one experienced
with ./a.exe -n 1. Also observe that the memory allocated is roughly proportional to n × s, while the
number of Tk threads created will be t× n× r (t× n in cache mode). The run.sh shell script transmits its
command line to all the executable (.exe) files it invokes, thereby providing a convenient means to control
testing condition for several tests. Satisfactory test parameters are found by experimenting and the control
of executable files by command line options is designed for that purpose.

2Some systems provide a user accessible timebase counter, that should provide consistent times to all cores and processors.

8

Once satisfactory parameters are found, it is a nuisance to repeat them for every experiment. Thus,
parameters a, r and s can also be set while invoking litmus, with the same command line options. In fact
those settings command he default values of .exe files controls. Additionally, the synchronisation technique
for iterations, the memory mode, and several others compile time parameters can be selected by appropriate
litmus command line options. Finally, users can record frequently used parameters in configuration files.

2.2 Affinity

We view affinity as a scheduler property that binds a (software, POSIX) thread to a given (hardware)
logical processor. In the most simple situation a logical processor is a core. However in the presence of
hyperthreading (x86) or simultaneous multi threading (SMT, Power) a given core can host several logical
processors.

2.2.1 Introduction to affinity

In our experience, binding the threads of test programs to selected logical processors yields significant
speedups and, more importantly, greater outcome variety. We illustrate the issue by the means of an
example.

We consider the test ppc-iriw-lwsync.litmus:

PPC ppc-iriw-lwsync

{

0:r2=x; 1:r2=x; 1:r4=y;

2:r4=y; 3:r2=x; 3:r4=y;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r4) ;

stw r1,0(r2) | lwsync | stw r1,0(r4) | lwsync ;

| lwz r3,0(r4) | | lwz r3,0(r2) ;

exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0)

The test consists of four threads. There are two writers (P0 and P2) that write the value one into two different
locations (x and y), and two readers that read the contents of x and y in different orders — P1 reads x first,
while P3 reads y first. The load instructions lwz in reader threads are separated by a lightweight barrier
instruction lwsync. The final condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) characterises
the situation where the reader threads see the writes by P0 and P2 in opposite order. The corresponding
outcome 1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0; is the only non-sequential consistent (non-SC, see Part II)
possible outcome. By any reasonable memory model for Power, one expects the condition to validate, i.e.
the non-SC outcome to show up.

The tested machine vargas is a Power 6 featuring 32 cores (i.e. 64 logical processors, since SMT is
enabled) and running AIX in 64 bits mode. So as not to disturb other users, we run only one instance of
the test, thus specifying four available processors. The litmus tool is absent on vargas. All these conditions
command the following invocation of litmus, performed on our local machine:

$ litmus -r 1000 -s 1000 -a 4 -os aix -ws w64 ppc-iriw-lwsync.litmus -o ppc.tar

$ scp ppc.tar vargas:/var/tmp

On vargas we unpack the archive and compile the test:

vargas% tar xf /var/tmp/ppc.tar && sh comp.sh

Then we run the test:

9

vargas% ./ppc-iriw-lwsync.exe -v

Test ppc-iriw-lwsync Allowed

Histogram (15 states)

152885:>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=0;

35214 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=0;

42419 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=0;

95457 :>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=0;

35899 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=0;

70460 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=0;

30449 :>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=0;

42885 :>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=1;

70068 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=1;

1 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=1;

41722 :>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=1;

95857 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=1;

30916 :>0:r1=1; 0:r3=0; 2:r1=1; 2:r3=1;

40818 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=1;

214950:>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is NOT validated

Hash=8ce05c9f86d49b2adfd5546bd471aa44

Time ppc-iriw-lwsync 1.33

The non-SC outcome does not show up.
Altering parameters may yield this outcome. In particular, we may try using all the available logical

processors with option -a 64. Affinity control offers an alternative, which is enabled at compilation time
with litmus option -affinity:

$ litmus ... -affinity incr1 ppc-iriw-lwsync.litmus -o ppc.tar

$ scp ppc.tar vargas:/var/tmp

Option -affinity takes one argument (incr1 above) that specifies the increment used while allocating
logical processors to test threads. Here, the (POSIX) threads created by the test (named T0, T1, T2 and T3

in Sec. 2.1) will get bound to logical processors 0, 1, 2, and 3, respectively.
Namely, by default, the logical processors are ordered as the sequence 0, 1, . . . , A − 1 — where A is

the number of available logical processors, which is inferred by the test executable3. Furthermore, logical
processors are allocated to threads by applying the affinity increment while scanning the logical processor
sequence. Observe that since the launch mode is changing (the default) threads Tk correspond to different
test threads Pi at each run. The unpack compile and run sequence on vargas now yields the non-SC
outcome, better outcome variety and a lower running time:

vargas% tar xf /var/tmp/ppc.tar && sh comp.sh

vargas% ./ppc-iriw-lwsync.exe

Test ppc-iriw-lwsync Allowed

Histogram (16 states)

5057 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

1703 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

3Parameter A is not to be confused with a of section 2.1. The former serves to compute logical threads while the latter

governs the number of tests that run simultaneously. However parameters a will be set to A when affinity control is enabled

and when a value is 0.

10

37165 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

127240:>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

1098 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

8 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

57309 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

213574:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

58751 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

85916 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

4 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

39929 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

101216:>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

171494:>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

21763 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

77773 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

Ok

Witnesses

Positive: 8, Negative: 999992

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation ppc-iriw-lwsync Sometimes 8 999992

Time ppc-iriw-lwsync 0.69

As vargas is a 2-ways SMT 32 core machine it features 64 logical processors By default the logical processor
One may change the affinity increment with the command line option -i of executable files. For instance,

one binds the test threads to logical processors 0, 2, 4 and 6 as follows:

vargas% ./ppc-iriw-lwsync.exe -i 2

Test ppc-iriw-lwsync Allowed

Histogram (15 states)

136179:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

38154 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

55296 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

89066 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

38425 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

74832 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

50619 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

55537 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

74656 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

2 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

40634 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

88741 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

50287 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

40020 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

167552:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation ppc-iriw-lwsync Never 0 1000000

Time ppc-iriw-lwsync 0.91

11

One observes that the non-SC outcome does not show up with the new affinity setting.
One may also bind test thread to logical processors randomly with executable option +ra.

vargas% ./ppc-iriw-lwsync.exe +ra

Test ppc-iriw-lwsync Allowed

Histogram (15 states)

...

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation ppc-iriw-lwsync Never 0 1000000

Time ppc-iriw-lwsync 1.85

Here, the condition does not validate.
As a matter of fact, logical processors are taken at random in the sequence 0, 1, . . . , 63; while the

successful run with -i 1 took them in the sequence 0, 1, 2, 3. One can limit the sequence of logical processor
with option -p, which takes a sequence of logical processors numbers as argument:

vargas% ./ppc-iriw-lwsync.exe +ra -p 0,1,2,3

Test ppc-iriw-lwsync Allowed

Histogram (16 states)

...

8 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

...

Ok

Witnesses

Positive: 8, Negative: 999992

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation ppc-iriw-lwsync Sometimes 8 999992

Time ppc-iriw-lwsync 0.70

The condition now validates.

2.2.2 Study of affinity

As illustrated by the previous example, both the running time and the outcomes of a test are sensitive to
affinity settings. We measured running time for increasing values of the affinity increment from 0 (which
disables affinity control) to 20, producing the following figure:

12

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 5 10 15 20

tim
e

(s
ec

.)

increment

As regards outcome variety, we get all of the 16 possible outcomes only for an affinity increment of 1.
The differences in running times can be explained by reference to the mapping of logical processors to

hardware. The machine vargas consists in four MCM’s (Multi-Chip-Module), each MCM consists in four
“chips”, each chip consists in two cores, and each core may support two logical processors. As far as we
know, by querying vargaswith the AIX commands lsattr, bindprocessor and llstat, the MCM’s hold the
logical processors 0–15, 16–31, 32–47 and 48–63, each chip holds the logical processors 4k, 4k+1, 4k+2, 4k+3
and each core holds the logical processors 2k, 2k + 1.

The measure of running times for varying increments reveals two noticeable slowdowns: from an increment
of 1 to an increment of 2 and from 5 to 6. The gap between 1 and 2 reveals the benefits of SMT for our
testing application. An increment of 1 yields both the greatest outcome variety and the minimal running
time. The other gap may perhaps be explained by reference to MCM’s: for a value of 5 the tests runs on the
logical processors 0, 5, 10, 15, all belonging to the same MCM; while the next affinity increment of 6 results
in running the test on two different MCM (0, 6, 12 on the one hand and 18 on the other).

As a conclusion, affinity control provides users with a certain level of control over thread placement,
which is likely to yield faster tests when threads are constrained to run on logical processors that are “close”
one to another. The best results are obtained when SMT is effectively enforced. However, affinity control
is no panacea, and the memory system may be stressed by other means, such as, for instance, allocating
important chunks of memory (option -s).

2.2.3 Advanced control

For specific experiments, the technique of allocating logical processors sequentially by following a fixed
increment may be two rigid. litmus offers a finer control on affinity by allowing users to supply the logical
processors sequence. Notice that most users will probably not need this advanced feature.

Anyhow, so as to confirm that testing ppc-iriw-lwsync benefits from not crossing chip boundaries, one
may wish to confine its four threads to logical processors 16 to 19, that is to the first chip of the second
MCM. This can be done by overriding the default logical processors sequence by an user supplied one given
as an argument to command-line option -p:

vargas% ./ppc-iriw-lwsync.exe -p 16,17,18,19 -i 1

Test ppc-iriw-lwsync Allowed

Histogram (16 states)

13

186125:>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=0;

1333 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=0;

16334 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=0;

83954 :>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=0;

1573 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=0;

9 :>0:r1=1; 0:r3=0; 2:r1=1; 2:r3=0;

19822 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=0;

72876 :>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=0;

20526 :>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=1;

24835 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=1;

1323 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=1;

97756 :>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=1;

78809 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=1;

67206 :>0:r1=1; 0:r3=0; 2:r1=1; 2:r3=1;

94934 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=1;

232585:>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=1;

Ok

Witnesses

Positive: 9, Negative: 999991

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is validated

Hash=8ce05c9f86d49b2adfd5546bd471aa44

Time ppc-iriw-lwsync 0.66

Thus we get results similar to the previous experiment on logical processors 0 to 3 (option -i 1 alone).
We may also run four simultaneous instances (-n 4, parameter n of section 2.1) of the test on the four

available MCM’s:

vargas% ./ppc-iriw-lwsync.exe -p 0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51 -n 4 -i 1

Test ppc-iriw-lwsync Allowed

Histogram (16 states)

...

Witnesses

Positive: 80, Negative: 3999920

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is validated

Time ppc-iriw-lwsync 0.74

Observe that, for a negligible penalty in running time, the number of non-SC outcomes increases significantly.
By contrast, binding threads of a given instance of the test to different MCM’s results in poor running

time and no non-SC outcome.

vargas% ./ppc-iriw-lwsync.exe -p 0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51 -n 4 -i 4

Test ppc-iriw-lwsync Allowed

Histogram (15 states)

...

Witnesses

Positive: 0, Negative: 4000000

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is NOT validated

Time ppc-iriw-lwsync 1.48

In the experiment above, the increment is 4, hence the logical processors allocated to the first instance of
the test are 0, 16, 32, 48, of which indices in the logical processors sequence are 0, 4, 8, 12, respectively. The
next allocated index in the sequence is 12 + 4 = 16. However, the sequence has 16 items. Wrapping around

14

yields index 0 which happens to be the same as the starting index. Then, so as to allocate fresh processors,
the starting index is incremented by one, resulting in allocating processors 1, 17, 33, 49 (indices 1, 5, 9, 13)
to the second instance — see section 2.3 for the full story. Similarly, the third and fourth instances will
get processors 2, 18, 34, 50 and 3, 19, 35, 51, respectively. Attentive readers may have noticed that the same
experiment can be performed with option -i 16 and no -p option.

Finally, users should probably be aware that at least some versions of Linux for x86 feature a less obvious
mapping of logical processors to hardware. On a bi-processor, dual-core, 2-ways hyperthreading, Linux,
AMD64 machine, we have checked that logical processors residing on the same core are k and k + 4, where
k is an arbitrary core number ranging from 0 to 3. As a result, a proper choice for favouring effective
hyperthreading on such a machine is -i 4 (or -p 0,4,1,5,2,6,3,7 -i 1). More worthwhile noticing,
perhaps, the straightforward choice -i 1 disfavours effective hyperthreading. . .

2.2.4 Custom control

Most tests run by litmus are produced by the litmus test generators described in Part II. Those tests include
meta-information that may direct affinity control. For instance we generate one test with the diyone tool,
see Sec. 4.2. More specifically we generate IRIW+lwsyncs for Power (ppc-iriw-lwsync in the previous
section) as follows:

% diyone -arch PPC -name IRIW+lwsyncs Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre

We get the new source file IRIW+lwsyncs.litmus:

PPC IRIW+lwsyncs

"Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre"

Prefetch=0:x=T,1:x=F,1:y=T,2:y=T,3:y=F,3:x=T

Com=Rf Fr Rf Fr

Orig=Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre

{

0:r2=x;

1:r2=x; 1:r4=y;

2:r2=y;

3:r2=y; 3:r4=x;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) ;

stw r1,0(r2) | lwsync | stw r1,0(r2) | lwsync ;

| lwz r3,0(r4) | | lwz r3,0(r4) ;

exists

(1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0)

The relevant meta-information is the “Com” line that describes how test threads are related — for instance,
thread 0 stores a value to memory that is read by thread 1, written “Rf” (see Part II for more details).
Custom affinity control will tend to run threads related by “Rf” on “close” logical processors, where we
can for instance consider that close logical processors belong to the same physical core (SMT for Power).
This minimal logical processor topology is described by two litmus command-line option: -smt <n> that
specifies n-way SMT; and -smt mode (seq|end) that specifies how logical processors from the same core
are numbered. For a 8-cores 4-ways SMT power7 machine we invoke litmus as follows:

% litmus -mem direct -smt 4 -smt_mode seq -affinity custom -o a.tar IRIW+lwsyncs.litmus

Notice that memory mode is direct and that the number of available logical processors is unspecified, resulting
in running one instance of the test. More importantly, notice that affinity control is enabled -affinity

custom, additionally specifying custom affinity mode.
We then upload the archive a.tar to our Power7 machine, unpack, compile and run the test:

15

power7% tar xmf a.tar

power7% make

...

power7% ./IRIW+lwsyncs.exe -v

./IRIW+lwsyncs.exe -v

IRIW+lwsyncs: n=1, r=1000, s=1000, +rm, +ca, p=’0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

thread allocation:

[23,22,3,2] {5,5,0,0}

Option -v instructs the executable to show settings of the test harness: we see that one instance of the
test is run (n=1), size parameters are reminded (r=1000, s=1000) and shuffling of indirect memory mode is
performed (+rm). Affinity settings are also given: mode is custom (+ca) and the logical processor sequence
inferred is given (-p 0,1,...,31). Additionally, the allocation of test threads to logical processors is given,
as [...], as well as the allocation of test threads to physical cores, as {...}.

Here is the run output proper:

Test IRIW+lwsyncs Allowed

Histogram (15 states)

2700 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

142 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

37110 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

181257:>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

78 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

15 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

103459:>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

149486:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

30820 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

9837 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

2399 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

204629:>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

214700:>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

5186 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

58182 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

Ok

Witnesses

Positive: 15, Negative: 999985

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=836eb3085132d3cb06973469a08098df

Com=Rf Fr Rf Fr

Orig=Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre

Affinity=[2, 3] [0, 1] ; (1,2) (3,0)

Observation IRIW+lwsyncs Sometimes 15 999985

Time IRIW+lwsyncs 0.70

As we see, the test validates. Namely we observe the non-SC behaviour of IRIW in spite of the presence
of two lwsync barriers. We may also notice, in the executable output some meta-information related to
affinity: it reads that threads 2 and 3 one the one hand and threads 0 and 1 on the other are considered
“close” (i.e. will run on the same physical core); while threads 1 and 2 on the one hand and threads 3 and 0
on the other are considered “far” (i.e. will run on different cores).

Custom affinity can be disabled by enabling another affinity mode. For instance with -i 0 we specify an
affinity increment of zero. That is, affinity control is disabled altogether:

16

power7% ./IRIW+lwsyncs.exe -i 0 -v

./IRIW+lwsyncs.exe -i 0 -v

IRIW+lwsyncs: n=1, r=1000, s=1000, +rm, i=0, p=’0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

Test IRIW+lwsyncs Allowed

Histogram (15 states)

...

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=836eb3085132d3cb06973469a08098df

Com=Rf Fr Rf Fr

Orig=Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre

Observation IRIW+lwsyncs Never 0 1000000

Time IRIW+lwsyncs 0.90

As we see, the test does not validate under those conditions.
Notice that section 12 describes a complete experiment on affinity control.

2.3 Controlling executable files

Test conditions Any executable file produced by litmus accepts the following command line options.

-v Be verbose, can be repeated to increase verbosity. Specifying -v is a convenient way to look at the default
of options.

-q Be quiet.

-a <n> Run maximal number of tests concurrently for n available logical processors — parameter a in
Sec. 2.1. Notice that if affinity control is enabled (see below), -a 0 will set parameter a to the number
of logical processors effectively available.

-n <n> Run n tests concurrently — parameter n in Sec. 2.1.

-r <n> Perform n runs — parameter r in Sec. 2.1.

-fr <f> Multiply r by f (f is a floating point number).

-s <n> Size of a run — parameter s in Sec. 2.1.

-fs <f> Multiply s by f .

-f <f> Multiply s by f and divide r by f .

Notice that options -s and -r accept a generalised syntax for their integer argument: when suffixed by k

(resp. M) the integer gets multiplied by 103 (resp. 106).
The following options are accepted only for tests compiled in indirect memory mode (see Sec. 2.1):

-rm Do not shuffle pointer arrays, resulting a behaviour similar do direct mode, without recompilation.

+rm Shuffle pointer arrays, provided for regularity.

The following option is accepted only for tests compiled with a specified stride value (see Sec. 2.1).

-st <n> Change stride to <n>. The default stride is specified at compile time by litmus option -stride.

The following option is accepted when enabled at compile time:

-l <n> Insert the assembly code of each thread in a loop of size <n>.

17

Affinity If affinity control has been enabled at compilation time (for instance, by supplying option -affinity
incr1 to litmus), the executable file produced by litmus accepts the following command line options.

-p <ns> Logical processors sequence. The sequence <ns> is a comma separated list of integers, The default
sequence is inferred by the executable as 0, 1, . . . , A − 1, where A is the number of logical processors
featured by the tested machine; or is a sequence specified at compile time with litmus option -p.

-i <n> Increment for allocating logical processors to threads. Default is specified at compile time by litmus
option -affinity incr<n>. Notice that -i 0 disable affinity and that .exe files reject the -i option
when affinity control has not been enabled at compile time.

+ra Perform random allocation of affinity at each test round.

+ca Perform custom affinity.

Notice that when custom affinity is not available, would it be that the test source lacked meta-information
or that logical processor topology was not specified at compile-time, then +ca behaves as +ra.

Logical processors are allocated test instance by test instance (parameter n of Sec. 2.1) and then thread by
thread, scanning the logical processor sequence left-to-right by steps of the given increment. More precisely,
assume a logical processor sequence P = p0, p1, . . . , pA−1 and an increment i. The first processor allocated
is p0, then pi, then p2i etc, Indices in the sequence P are reduced modulo A so as to wrap around. The
starting index of the allocation sequence (initially 0) is recorded, and coincidence with the index of the next
processor to be allocated is checked. When coincidence occurs, a new index is computed, as the previous
starting index plus one, which also becomes the new starting index. Allocation then proceeds from this new
starting index. That way, all the processors in the sequence will get allocated to different threads naturally,
provided of course that less than A threads are scheduled to run. See section 2.2.3 for an example with
A = 16 and i = 4.

2.4 Timebase synchronisation mode

Timebase synchronisation of the testing loop iterations (see Sec. 2.1) is selected by litmus command line
option -barrier timebase. Some tests demonstrate that timebase synchronisation is more precise than
user synchronisation (-barrier user and default).

For instance, consider the x86 test 6.SB.litmus, a 6-thread analog of the SB test:

X86 6.SB

"Fre PodWR Fre PodWR Fre PodWR Fre PodWR Fre PodWR Fre PodWR"

{

}

P0 | P1 | P2 | P3 | P4 | P5 ;

MOV [x],$1 | MOV [y],$1 | MOV [z],$1 | MOV [a],$1 | MOV [b],$1 | MOV [c],$1 ;

MOV EAX,[y] | MOV EAX,[z] | MOV EAX,[a] | MOV EAX,[b] | MOV EAX,[c] | MOV EAX,[x] ;

exists

(0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0)

We first compile the test in user synchronisation mode, saving litmus output files into the pre-existing
directory R:

% litmus -barrier user -vb true -o R 6.SB.litmus

% cd R

% make

The additional command line option -vb true activates the printing of some timing information on syn-
chronisations.

We then directly run the test executable 6.SB.exe:

18

% ./6.SB.exe

Test 6.SB Allowed

Histogram (62 states)

7569 :>0:EAX=1; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

8672 :>0:EAX=0; 1:EAX=1; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

326 :>0:EAX=1; 1:EAX=0; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

907 :>0:EAX=0; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0) is NOT validated

Hash=107f1303932972b3abace3ee4027408e

Observation 6.SB Never 0 1000000

Time 6.SB 0.85

The targeted outcome — reading zero in the EAX registers of the 6 threads — is not observed. We can
observe synchronisation times for all tests runs with the executable command line option +vb:

% ./6.SB.exe +vb

99999: 162768 420978 564546 -894 669468

99998: -93 3 81 -174 -651

99997: -975 -30 -33 93 -192

99996: 990 1098 852 1176 774

...

We see five columns of numbers that list, for each test run, the starting delays of P1, P2 etc. with respect
to P0, expressed in timebase ticks. Obviously, synchronisation is rather loose, there are always two threads
whose starting delays differ of of about 1000 ticks.

We now compile the same test in timebase synchronisation mode:

% litmus -barrier timebase -vb true -o RT 6.SB.litmus

% cd RT

% make

And we run the test directly (option -vb disable the printing of any synchronisation timing information):

% ./6.SB.exe -vb

Test 6.SB Allowed

Histogram (64 states)

80226 :>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

33182 :>0:EAX=1; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

1076 :>0:EAX=0; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

50 :>0:EAX=1; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

Ok

Witnesses

Positive: 80226, Negative: 919774

Condition exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0) is validated

Hash=107f1303932972b3abace3ee4027408e

Observation 6.SB Sometimes 80226 919774

Time 6.SB 3.40

19

We now see that the test validates. Moreover all of the 64 possible outcomes are observed.
Timebase synchronisation works as follows: at every iteration,

1. one of the threads reads timebase T ;

2. all threads synchronise by the means of a polling synchronisation barrier;

3. each thread computes Ti = T + δi, where δi is the timebase delay, a thread specific constant;

4. each thread loops, reading the timebase until the read value exceeds Ti.

By default the timebase delay δi is 2
11 = 2048 for all threads.

The precision of timebase synchronisation can be illustrated by enabling the printing of all synchronisation
timings:

% ./6.SB.exe +vb

99999: 672294[1] 671973[1] 672375[1] 672144[1] 672303[1] 672222[1]

99998: 4524[1] 4332[1] 4446[1] 2052[65] 2064[73] 4095[1]

...

99983: 4314[1] 3036[1] 3141[1] 2769[1] 4551[1] 3243[1]

99982:* 2061[36] 2064[33] 2067[11] 2079[12] 2064[14] 2064[24]

99981: 2121[1] 2382[1] 2586[1] 2643[1] 2502[1] 2592[1]

...

For each test iteration and each thread, two numbers are shown (1) the last timebase value read by the loop 4
above and (2) (in brackets [. . .]) how many iterations of this loop were performed. Additionally a star “*”
indicates the occurrence of the targeted outcome. Here, we see that a nearly perfect synchronisation can be
achieved (cf. line 99982: above).

Once timebase synchronisation have been selected (litmus option -barrier timebase), test executable
behaviour can be altered by the following two command line options:

-ta <n> Change the timebase delay δi of all threads.

-tb <0:n0;1:n1;· · ·> Change the timebase delay δi of individual threads.

The litmus command line option -vb true (verbose barrier) governs the printing of synchronisation
timings. It comes handy when choosing values for the -ta and -tb options. When set, the executable show
synchronisation timings for outcomes that validate the test final condition. This default behaviour can be
altered with the following two command line options:

-vb Do not show synchronisation timings.

+vb Show synchronisation timings for all outcomes.

Synchronisation timings are expressed in timebase ticks. The format depends on the synchronisation mode
(litmus option -barrier)). This section just gave two examples for user mode (timings are show as differences
from thread P0); and for timebase mode (timings are shown as differences from a commonly agreed by all
thread timebase value). Notice that, when affinity control is enabled, the running logical processors of
threads are also shown.

3 Usage of litmus

Arguments

litmus takes file names as command line arguments. Those files are either a single litmus test, when having
extension .litmus, or a list of file names, when prefixed by @. Of course, the file names in @files can
themselves be @files.

20

Options

There are many command line options. We describe the more useful ones:

General behaviour

-version Show version number and exit.

-libdir Show installation directory and exit.

-v Be verbose, can be repeated to increase verbosity.

-mach <name> Read configuration file name.cfg. See the next section for the syntax of configuration files.

-o <dest> Save C-source of test files into <dest> instead of running them. If argument <dest> is an
archive (extension .tar) or a compressed archive (extension .tgz), litmus builds an archive: this is the
“cross compilation feature” demonstrated in Sec. 1.2. Otherwise, <dest> is interpreted as the name of
an existing directory and tests are saved in it.

-crossrun <(user@)?host(:port)?> Run on a distant <host> (where a the ssh daemon may listen on the
non-standard port port), default: disabled — i.e. run tests on the machine where the run.sh script
runs. This option may be useful when the tested machine has little disk space or a crippled installation.

-index <@name> Save the source names of compiled files in index file @name.

Test conditions The following options set the default values of the options of the executable files produced:

-a <n> Run maximal number of tests concurrently for n available logical processors — set default value for
-a of Sec. 2.3. Default is 1 (run one test). When affinity control is enabled, the value 0 has the special
meaning of having executables to set the number of available logical processors according to how many
are actually present.

-limit <bool> Do not process tests with more than n threads, where n is the number of available cores
defined above. Default is false.

-r <n> Perform n runs — set default value for option -r of Sec. 2.3. The option accepts generalised syntax
for integers and default is 10.

-s <n> Size of a run — set default value for option -s of Sec. 2.3. The option accepts generalised syntax
for integers and default is 100000 (or 100k).

The following additional options control the various modes described in Sec. 2.1, and more. Those cannot
be changed without running litmus again:

-barrier (user|userfence|pthread|none|timebase) Set synchronisation mode, default user. Synchro-
nisation modes are described in Sec. 2.1

-launch (changing|fixed) Set launch mode, default changing.

-mem (indirect|direct) Set memory mode, default indirect. It is possible to instruct executables com-
piled in indirect mode to behave almost as if compiled in direct mode, see Sec. 2.3.

-stride <n> Specify a stride value of <n> — set default value for option -st of Sec. 2.3. See Sec. 2.1 for
details on the stride parameter. If ¡n¿ is negative or zero, restore the default, which is stride feature
disabled.

-st <n> Alias for -stride <n>.

21

-para (self|shell) Perform several tests concurrently, either by forking POSIX threads (as described in
Sec. 2.1), or by forking Unix processes. Only applies for cross compilation. Default is self.

-prealloc <bool> Enable or disable pre-allocation mode, default disabled. In pre-allocation mode, memory
is allocated before forking any thread.

-preload (no|random|custom) Specify preload mode (see Sec. 2.1, default random. Starting from version
5.0 we provide the additional custom preload mode, for a finer control of prefetching and flushing of
some memory locations by some threads. The feature is experimental and undocumented.

-safer (no|all|write) Specify safer mode, default is “write” When instructed to do so, executable files
perform some consistency checks. Those are intended both for debugging and for dynamically checking
some assumption on POSIX threads that we rely upon. More specifically the test harness checks for
the stabilisation of memory locations after a test round in the “all” and “write” mode, while the
initial values of memory locations are check in “all” mode.

-speedcheck (no|some|all) Quick condition check mode, default is “no”. In mode “some”, test executable
will stop as soon as its condition is settled. In mode “all”, the run.sh script will additionally not run
the test if invoked once more later.

The two following options enable affinity control.

-affinity (none|incr<n>|random|custom) Step for allocating logical processors to threads — set default
value for option -i of Sec. 2.3. Default is none, i.e. produced code does not feature affinity control.
With -affinity incr0, produced code features affinity control, which executable files do not exercise
by default.

-i <n> Alias for -affinity incr<n>.

Notice that affinity control is not implemented for MacOs.
The following option is significant when affinity control is enabled. Otherwise it is a silent no-op.

-p <ns> Specify the sequence of logical processors, implies -affinity incr1. The notation <ns> stands
for a comma separated list of integers. Set default value for option -p of Sec. 2.3. Default for this -p
option will let executable files compute the logical processor sequence themselves.

Custom affinity control (see Sec. 2.2.4 is enabled, first by enabling affinity control (e.g. with -i 0), then
by specifying a logical processor topology with options -smt and -smt mode. Then custom affinity can be
enabled by default in produced executables with option -custom affinity true.

-smt <n> Specify that logical processors are close by groups of n. Default is 1.

-smt mode (none|seq|end) Specify how “close” logical processors are numbered. Default is none. In
mode end (X86) logical processors of the same core are numbered as c, c+Ac etc. where c is a physical
core number and Ac is the number of physical cores available. In mode seq logical processors of the
same core are numbered in sequence.

Notice that custom affinity works only for those tests that include the proper meta-information. Otherwise,
custom affinity silently degrades to random affinity.

Finally, a few miscellaneous options are documented:

-l <n> Insert the assembly code of each thread in test in a loop of size <n>. Accepts generalised integer
syntax, disabled by default. Sets default value for option -l of Sec. 2.3.

This feature may prove useful for measuring running times that are not too much perturbed by the
test harness, in combination with options -s 1 -r 1.

22

-vb <bool> Disable/enable the printing of synchronisation timings, default is false.

This feature may prove useful for analysing the synchronisation behaviour of a specific test, see Sec. 2.4.

-ccopts <flags> Set gcc compilation flags (defaults: X86="-fomit-frame-pointer -O2", PPC/ARM="-O2").

-gcc <name> Change the name of C compiler, default gcc.

-linkopts <flags> Set gcc linking flags. (default: void).

-gas <bool> Emit Gnu as extensions (default Linux/Mac=true, AIX=false)

Target architecture description Litmus compilation chain may slightly vary depending on the following
parameters:

-os (linux|mac|aix) Set target operating system. This parameter mostly impacts some of gcc options.
Default linux.

-ws (w32|w64) Set word size. This option first selects gcc 32 or 64 bits mode, by providing it with the
appropriate option (-m32 or -m64 on linux, -maix32 or -maix64 on AIX). It also slightly impacts code
generation in the corner case where memory locations hold other memory locations. Default is a bit
contrived: it acts as w32 as regards code generation, while it provides no 32/64 bits mode selection
option to gcc.

Configuration files

The syntax of configuration files is minimal: lines “key = arg” are interpreted as setting the value of param-
eter key to arg. Each parameter has a corresponding option, usually -key, except for single-letter options:

option key arg

-a avail integer
-s size of test integer
-r number of run integer
-p procs list of integers
-l loop integer

Notice that litmus in fact accepts long versions of options (e.g. -avail for -a).
As command line option are processed left-to-right, settings from a configuration file (option -mach) can

be overridden by a later command line option. Some configuration files for the machines we have tested are
present in the distribution. As an example here is the configuration file hpcx.cfg.

size_of_test = 2000

number_of_run = 20000

os = AIX

ws = W32

A node has 16 cores X2 (SMT)

avail = 32

Lines introduced by # are comments and are thus ignored.
Configuration files are searched first in the current directory; then in any directory specified by setting

the shell environment variable LITMUSDIR; and then in litmus installation directory, which is defined while
compiling litmus.

23

Part II

Generating tests

The authors of diy are Jade Alglave and Luc Maranget (INRIA Paris–Rocquencourt).

4 Preamble

We wrote diy as part of our empirical approach to studying relaxed memory models: developing in tan-
dem testing tools and models of multiprocessor behaviour. In this tutorial, we attempt an independent
tool presentation. Readers interested by the companion formalism are invited to refer to our CAV 2010
publication [1].

The distribution includes additional test generators: diyone for generating one test and diycross for
generating simple variations on one test.

4.1 Relaxation of Sequential Consistency

Relaxation is one of the key concepts behind simple analysis of weak memory models. We define a candi-
date relaxation by reference to the most natural model of parallel execution in shared memory: Sequential
Consistency (SC), as defined by L. Lamport [3]. A parallel program running on a sequentially consistent
machine behaves as an interleaving of its sequential threads.

Consider once more the example SB.litmus:

X86 SB

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ; #(a)Wy1 | (c)Wx1

MOV EAX,[x] | MOV EAX,[y] ; #(b)Rx0 | (d)Ry0

exists (0:EAX=0 /\ 1:EAX=0)

To focus on interaction through shared memory, let us consider memory accesses, or memory events. A
memory event will hold a direction (write, written W, or read, written R), a memory location (written x, y)
a value and a unique label. In any run of the simple example above, four memory events occur: two writes
(c)Wx1 and (a)Wy1 and two reads (b)Rxv1 with a certain value v1 and (d) Ryv2 with a certain value v2.

If the program’s behaviour is modelled by the interleaving of its events, the first event must be a write
of value 1 to location x or y and at least one of the loads must see a 1. Thus, a SC machine would exhibit
only three possible outcomes for this test:

Allowed: 0:EAX = 0 ∧ 1:EAX = 1
Allowed: 0:EAX = 1 ∧ 1:EAX = 0
Allowed: 0:EAX = 1 ∧ 1:EAX = 1

However, running (see Sec. 1.1) this test on a x86 machine yields an additional result:

Allowed: 0:EAX = 0 ∧ 1:EAX = 0

And indeed, x86 allows each write-read pair on both processors to be reordered [2]: thus the write-read
pair in program order is relaxed on each of these architectures. We cannot use SC as an accurate memory
model for modern architectures. Instead we analyse memory models as relaxing the ordering constraints of
the SC memory model.

24

4.2 Introduction to candidate relaxations

Consider again our classical example, from a SC perspective. We briefly argued that the outcome “0:EAX
= 0 ∧ 1:EAX = 0” is forbidden by SC. We now present a more complete reasoning:

• From the condition on outcome, we get the values in read events: (b)Rx0 and (d)Ry0.

• Because of these values, (b)Rx0 must precede the write (c)Wx1 in the final interleaving of SC. Similarly,

(d)Ry0 must precede the write (a)Wy1. This we note (b)
fr
→ (c) and (d)

fr
→ (a).

• Because of sequential execution order on one single processor (a.k.a. program order), (a)Wy1 must
precede (b)Rx0 (first processor); while (c)Wx1 must precede (d) Ry0 (second processor). This we note

(a)
po
→ (b) and (c)

po
→ (d).

• We synthesise the four constraints above as the following graph:

(a) Wy1

(b) Rx0

(c) Wx1

(d) Ry0

po rf

fr

porf

fr

rf

rf

Constraint arrows or global arrows are shown in brown colour. As the graph contains a cycle of brown
arrows, the events cannot be ordered. Hence the execution presented is not allowed by SC.

The key idea of diy resides in producing programs from similar cycles. To that aim, the edges in cycles
must convey additional information:

• For
po
→ edges, we consider whether the locations of the events on both sides of the edge are the same

or not (’s’ or ’d’); and the direction of these events (W or R). For instance the two
po
→ edges in the

example are PodWR. (program order edge between a write and a read whose locations are different).

• For
fr
→ edges, we consider whether the processor of the events on both sides of the edge are the same

or not (’i’ for internal, or ’e’ for external). For instance the two
fr
→ edges in the example are Fre.

So far so good, but our x86 machine produced the outcome 0:EAX=0 ∧ 1:EAX=0. The Intel Memory
Ordering White Paper [2] specifies: “Loads may be reordered with older stores to different locations”, which
we rephrase as: PodWR is relaxed. Considering Fre to be safe, we have the graph:

25

(a)Wy1

(b)Rx0

(c)Wx1

(d)Ry0

PodWR Rf

Fre

PodWRRf

Fre

Rf

Rf

And the brown sub-graph becomes acyclic.
We shall see later why we choose to relax PodWR and not Fre. At the moment, we observe that we can

assume PodWR to be relaxed and Fre not to be (i.e. to be safe) and test our assumptions, by producing
and running more litmus tests. The diy suite precisely provides tools for this approach.

As a first example, SB.litmus can be created as follows:

% diyone -arch X86 -name SB Fre PodWR Fre PodWR

As a second example, we can produce several similar tests as follows:

% diy -arch X86 -safe Fre -relax PodWR -name SB

Generator produced 2 tests

Relaxations tested: {PodWR}

diy produces two litmus tests, SB000.litmus and SB001.litmus, plus one index file @all. One of the litmus
tests generated is the same as above, while the new test is:

% cat SB001.litmus

X86 SB001

"Fre PodWR Fre PodWR Fre PodWR"

Cycle=Fre PodWR Fre PodWR Fre PodWR

Relax=PodWR

Safe=Fre

{ }

P0 | P1 | P2 ;

MOV [z],$1 | MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[x] | MOV EAX,[y] | MOV EAX,[z] ;

exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0)

% cat @all

diy -arch X86 -safe Fre -relax PodWR -name SB

Revision: 3333

SB000.litmus

SB001.litmus

diy first generates cycles from the candidate relaxations given as arguments, up to a limited size, and
then generates litmus tests from these cycles.

4.3 More candidate relaxations

We assume the memory to be coherent. Coherence implies that, in a given execution, the writes to a given
location are performed by following a sequence, or coherence order, and that all processors see the same
sequence.

26

In diy, the coherence orders are specified indirectly. For instance, the candidate relaxation Wse (resp.
Wsi) specifies two writes, performed by different processors (resp. the same processor), to the same location ℓ,
the first write preceding the second in the coherence order of ℓ. The condition of the produced test then
selects the specified coherence orders. Consider for instance:

% diyone -arch X86 -name x86-2+2W Wse PodWW Wse PodWW

The cycle that reveals a violation of the SC memory model is:

(a) Wy2

(b) Wx1

(c) Wx2

(d) Wy1

PodWWrf

Wse

PodWWrf

Wse

So the coherence order is 0 (initial store, not depicted), 1, 2 for both locations x and y. While the produced
test is:

X86 x86-2+2W

"Wse PodWW Wse PodWW"

Prefetch=0:x=F,0:y=W,1:y=F,1:x=W

Com=Ws Ws

Orig=Wse PodWW Wse PodWW

{

}

P0 | P1 ;

MOV [x],$2 | MOV [y],$2 ;

MOV [y],$1 | MOV [x],$1 ;

exists

(x=2 /\ y=2)

By the coherence hypothesis, checking the final value of locations suffices to characterise those two coherence
orders, as expressed by the final condition of x86-2+2W:

exists (x=2 /\ y=2)

See Sec. 8 for alternative means to identify coherence orders.
Candidate relaxations Rfe and Rfi relate writes to reads that load their value. We are now equipped to

generate the famous iriw test (independent reads of independent writes):

% diyone -arch X86 Rfe PodRR Fre Rfe PodRR Fre -name iriw

We generate its internal variation (i.e. where all Rfe are replaced by Rfi) as easily:

% diyone -arch X86 Rfi PodRR Fre Rfi PodRR Fre -name iriw-internal

We get the cycles of Fig. 1, and the litmus tests of Fig. 2.
Candidate relaxations given as arguments really are a “concise specification”. As an example, we get

iriw for Power, simply by changing -arch X86 into -arch PPC.

27

Figure 1: Cycles for iriw and iriw-internal

(a) Ry1

(b) Rx0

(c) Wx1

(d) Rx1

(e) Ry0

(f) Wy1

PodRR

Fre

Rferf

PodRR

Fre

Rfe

rf

rf

rf

(a) Wx1

(b) Rx1

(c) Ry0

(d) Wy1

(e) Ry1

(f) Rx0

Rfi rf

PodRR

Fre

Rfirf

PodRR

Fre

rf

rf

Figure 2: Litmus tests iriw and iriw-internal

X86 iriw

"Rfe PodRR Fre Rfe PodRR Fre"

{ }

P0 | P1 | P2 | P3 ;

MOV EAX,[y] | MOV [x],$1 | MOV EAX,[x] | MOV [y],$1 ;

MOV EBX,[x] | | MOV EBX,[y] | ;

exists (0:EAX=1 /\ 0:EBX=0 /\ 2:EAX=1 /\ 2:EBX=0)

X86 iriw-internal

"Rfi PodRR Fre Rfi PodRR Fre"

{ }

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

MOV EBX,[y] | MOV EBX,[x] ;

exists

(0:EAX=1 /\ 0:EBX=0 /\

1:EAX=1 /\ 1:EBX=0)

28

% diyone -arch PPC Rfe PodRR Fre Rfe PodRR Fre

PPC a

"Rfe PodRR Fre Rfe PodRR Fre"

{

0:r2=y; 0:r4=x;

1:r2=x;

2:r2=x; 2:r4=y;

3:r2=y;

}

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwz r3,0(r4) | stw r1,0(r2) | lwz r3,0(r4) | stw r1,0(r2) ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0)

Also notice that without the -name option, diyone writes its result to standard output.

4.4 Summary of simple candidate relaxations

We summarise the candidate relaxations available on all architectures.

4.4.1 Communication candidate relaxations

We call communication candidate relaxations the relations between two events communicating through
memory, though they could belong to the same processor. Thus, these events operate on the same memory
location.

diy syntax Source Target Processor Additional property
Rfi W R Same Target reads its value from source
Rfe W R Different Target reads its value from source
Wsi W W Same Source precedes target in coherence order
Wse W W Different Source precedes target in coherence order
Fri R W Same Source reads a value from a write that pre-

cedes target in coherence order
Fre R W Different Source reads a value from a write that pre-

cedes target in coherence order

4.4.2 Program order candidate relaxations

We call program order candidate relaxations each relation between two events in the program order. These
events are on the same processor, since they are in program order. As regards code output, diy interprets
a program order candidate relaxation by generating two memory instructions (load or store) following one
another.

Program order candidate relaxations have the following syntax:

Po(s|d)(R|W)(R|W)

where:

• s (resp. d) indicates that the two events are to the same (resp. different) location(s);

• R (resp. W) indicates an event to be a read (resp. a write);

In practice, we have:

29

diy syntax Source Target Location
PosRR R R Same
PodRR R R Diff
PosRW R W Same
PodRW R W Diff
PosWW W W Same
PodWW W W Diff
PosWR W R Same
PodWR W R Diff

It is to be noticed that PosWR, PosWW and PosRW are similar to Rfi, Wsi and Fri, respectively. More
precisely, diy is unable to consider a PosWR (or PosWW, or PosRW) candidate relaxation as not being also
a Rfi (or Wsi, or Fri) candidate relaxation. However, litmus tests conditions may be more informative in the
case of Rfi and Fri.

4.4.3 Fence candidate relaxations

Relaxed architectures provide specific instructions, namely barriers or fences, to enforce order of memory
accesses. In diy the presence of a fence instruction is specified with fence candidate relaxations, similar to
program order candidate relaxations, except that a fence instruction is inserted. Hence we have FencedsRR,
FenceddRR. etc. The inserted fence is the strongest fence provided by the architecture — that is, mfence
for x86 and sync for Power.

Fences can also be specified by using specific names. More precisely, we have MFence for x86; while on
Power we have Sync, LwSync, Eieio and Isync. Hence, to yield two reads to different locations and separated
by the lightweight Power barrier lwsync, we specify LwSyncdRR. On ARM we have DMB, DSB and ISB.

5 Testing candidate relaxations with diy

The tool diy can probably be used in various, creative, ways; but the tool first stems from our technique for
testing relaxed memory models. The -safe and -relax options are crucial here. We describe our technique
by the means of an example: X86-TSO.

Notice that this style of model exploration is mechanised by dont (diy) — see Part IV.

5.1 Principle

Before engaging in testing it is important to categorise candidate relaxations as safe or relaxed.
This can done by interpretation of vendor’s documentation. For instance, the iriw test of Sec. 4.3 is the

example 7.7 of [2] “Stores Are Seen in a Consistent Order by Other Processors”, with a Forbid specification.
Hence we deduce that Fre, Rfe and PodRR are safe. Then, from test iriw-internal of Sec. 4.3, which is Intel’s
test 7.5 “Intra-Processor Forwarding Is Allowed” with an allow specification, we deduce that Rfi is relaxed.
Namely, the cycle of iriw-internal is “Fre Rfi PodRR Fre Rfi PodRR”. Therefore, the only possibility is for
Rfi to be relaxed.

Overall, we deduce:

• Candidate relaxations PosWR (Rfi) and PodWR are relaxed

• The remaining candidate relaxations PosRR, PodRR, PosWW (Wsi), PodWW, PosRW (Fri), Fre and
Wse are safe. Fence relaxations FencedsWR and FenceddWR are also safe and worth testing.

Of course these remain assumptions to be tested. To do so, we perform one series of tests per relaxed
candidate relaxation, and one series of tests for confirming safe candidate relaxations as much as possible.
Let S be all safe candidate relaxations.

30

• Let r be a relaxed candidate relaxation. We produce tests for confirming r being relaxed by diy

-relax r -safe S. We run these tests with litmus. If one of the tests yields Ok, then r is confirmed to
be relaxed, provided the experiments on S below do not fail.

• For confirming the safe set, we produce tests by diy -safe S. We run these tests as much as possible
and expect never to see Ok.

Namely, diy builds cycles as follows:

• diy -relax r -safe S build cycles with at least one r taking other candidate relaxations from S.

• diy -safe S build cycles from the candidate relaxations in S.

For the purpose of confirming relaxed candidate relaxations, S can be replaced by a subset.

5.2 Testing x86

Repeating command line options is painful and error prone. Besides, configuration parameters may get lost.
Thus, we regroup those in configuration files that simply list the options to be passed to diy, one option per
line. For instance here is the configuration file for testing the safe relaxations of x86, x86-safe.conf.

#safe x86 conf file

-arch X86

#Generate tests on four processors or less

-nprocs 4

#From cycles of size at most six

-size 6

#With names safe000, safe0001,...

-name safe

#List of safe relaxations

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FencedsWR FenceddWR

Observe that the syntax of candidate relaxations allows one shortcut: the wildcard * stands for W and R.
Thus PodR* gets expanded to the two candidate relaxations PodRR and PodRW.

We get safe tests by issuing the following command, preferably in a specific directory, say safe.

% diy -conf x86-safe.conf

Generator produced 38 tests

Relaxations tested: {}

Here are the configuration files for confirming that Rfi and PodWR are relaxed, x86-rfi.conf and x86-podwr.conf.

#rfi x86 conf file

-arch X86

-nprocs 4

-size 6

-name rfi

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FencedsWR FenceddWR

-relax Rfi

#podrw x86 conf file

-arch X86

-nprocs 4

-size 6

-name podwr

-safe Fre

-relax PodWR

Notice that we used the complete safe list in x86-rfi.conf and a reduced list in x86-podwr.conf. Tests
are to be generated in specific directories.

31

% cd rfi

% diy -conf x86-rfi.conf

Generator produced 11 tests

Relaxations tested: {Rfi}

% cd ../podwr

% diy -conf x86-podwr.conf

Generator produced 2 tests

Relaxations tested: {PodWR}

% cd ..

Now, let us run all tests at once, with the parameters of machine saumur (4 physical cores with hyper-
threading):

% litmus -mach saumur rfi/@all > rfi/saumur.rfi.00

% litmus -mach saumur podwr/@all > podwr/saumur.podwr.00

% litmus -mach saumur safe/@all > safe/saumur.safe.00

If your machine has 2 cores only, try litmus -a 2 -limit true. . .
We now look for the tests that have validated their condition in the result files of litmus. A simple tool,

readRelax, does the job:

% readRelax rfi/saumur.rfi.00 podwr/saumur.podwr.00 safe/saumur.safe.00

.

.

.

** Relaxation summary **

{Rfi} With {Rfe, Fre, Wse, PodRW, PodRR} {Rfe, Fre, PodRR}\

{Fre, Wse, PodWW, PodRR} {Fre, PosWW, PodRR, MFencedWR}\

{Fre, PodWW, PodRR, MFencedWR} {Fre, PodRR} {Fre, PodRR, MFencedWR}

{PodWR} With {Fre}

The tool readRelax first lists the result of all tests (which is omitted above), and then dumps a summary of
the relaxations it found. The sets of the candidate relaxations that need to be safe for the tests to indeed
reveal a relaxed candidate relaxation are also given. Here, Rfi and PodWR are confirmed to be relaxed, while
no candidate relaxation in the safe set is found to be relaxed. Had it been the case, a line {} With {...}

would have occurred in the relaxation summary. The safe tests need to be run a lot of times, to increase our
confidence in the safe set.

6 Additional relaxations

We introduce some additional candidate relaxations that are specific to the Power architecture. We shall not
detail here our experiments on Power machines. See our experience report http://diy.inria.fr/phat/ for
more details.

6.1 Intra-processor dependencies

In a very relaxed architecture such as Power, intra-processor dependencies becomes significant. Roughly,
intra-processor dependencies fall into two categories:

Data dependencies occur when a memory access instruction reads a register whose contents depends upon
a previous (in program order) load. In diy we specify such a dependency as:

Dp(s|d)(R|W)

32

where, as usual, s (resp. d) indicates that the source and target events are to the same (resp. different)
location(s); and R (resp. W) indicates that the target event is a read (resp. a write). As a matter of
fact, we do not need to specify the direction of the source event, since it always is a read.

Finally, one may control the nature of the dependency: address dependency (DpAddr(s|d)(R|W) or
data dependency (DpData(s|d)W).

Control dependencies occur when the execution of a memory access is conditioned by the contents of a
previous load. Their syntax is similar to the one of Dp relaxations, with a Ctrl tag:

Ctrl(s|d)(R|W)

This default syntax expands to control dependencies as guaranteed by the Power documentation. For
read to write, conditioning execution is enough (expanded syntax, DpCtrl(s|d)W). But for read to
read, an extra instruction, isync, is needed (expanded syntax DpCtrlIsync(s|d)R, see below). The
syntax DpCtrl(s|d)R also exists, it expresses the conditional execution of a load instruction and does
not create ordering.

ARM has similar candidate relaxations, Isync being replaced by ISB.

In the produced code, diy expresses a data dependency by a false dependency (or dummy dependency) that
operates on the address of the target memory access. For instance:

% diyone DpdW Rfe DpdW Rfe

PPC a

"DpAddrdW Rfe DpAddrdW Rfe"

{

0:r2=y; 0:r5=x;

1:r2=x; 1:r5=y;

}

P0 | P1 ;

lwz r1,0(r2) | lwz r1,0(r2) ;

xor r3,r1,r1 | xor r3,r1,r1 ;

li r4,1 | li r4,1 ;

stwx r4,r3,r5 | stwx r4,r3,r5 ;

exists (0:r1=1 /\ 1:r1=1)

On P0, the effective address of the indexed store stwx r4,r3,r5 depends on the contents of the index
register r3, which itself depends on the contents of r1. The dependency is a “false” one, since the contents
of r3 always is zero, regardless of the contents of r1. One may observe that DpdW is changed into DpAddrdW
in the comment field of the test. As a matter of fact, DpdW is a macro for the address dependency DpAddrW.
We could have specified data dependency instead:

% diyone DpDatadW Rfe DpAddrdW Rfe

PPC a

"DpDatadW Rfe DpAddrdW Rfe"

{

0:r2=y; 0:r4=x;

1:r2=x; 1:r5=y;

}

P0 | P1 ;

lwz r1,0(r2) | lwz r1,0(r2) ;

xor r3,r1,r1 | xor r3,r1,r1 ;

addi r3,r3,1 | li r4,1 ;

stw r3,0(r4) | stwx r4,r3,r5 ;

33

exists

(0:r1=1 /\ 1:r1=1)

On P0, the value stored by the last (store) instruction stw r3,0(r4) is now computed from the value read
by the first (load) instruction lwz r1,0(r2). Again, this is a “false” dependency.

A control dependency is implemented by the means of an useless compare and branch sequence, plus the
isync instruction when the target event is a load. For instance

% diyone CtrldR Fre SyncdWW Rfe

PPC a

"DpCtrlIsyncdR Fre SyncdWW Rfe"

{

0:r2=y; 0:r4=x;

1:r2=x; 1:r4=y;

}

P0 | P1 ;

lwz r1,0(r2) | li r1,1 ;

cmpw r1,r1 | stw r1,0(r2) ;

beq LC00 | sync ;

LC00: | li r3,1 ;

isync | stw r3,0(r4) ;

lwz r3,0(r4) | ;

exists

(0:r1=1 /\ 0:r3=0)

Also notice that CtrldR is interpreted as DpCtrlIsyncR in the comment field of the test.
Of course, in all cases, we assume that “false” dependencies are not “optimised out” by the assembler or

the hardware.

6.2 Composite relaxations and cumulativity

Users may specify a small sequence of single candidate relaxations as behaving as a single candidate relaxation
to diy. The syntax is:

[r1, r2, . . .]

The main usage of the feature is to specify cumulativity candidate relaxations, that is, the sequence of Rfe
and of a fence candidate relaxation (A-cumulativity), the sequence of a fence candidate relaxation and of Rfe
(B-cumulativity), or both (AB-cumulativity).

Cumulativity candidate relaxations are best expressed by the following syntactical shortcuts: let r be
a fence candidate relaxation, then ACr stands for [Rfe,r], BCr stands for [r,Rfe], while ABCr stands
for [Rfe,r,Rfe],

Hence, a simple way to generate iriw-like (see Sec. 4.3) litmus tests with lwsync is as follows:

% diy -name iriw-lwsync -nprocs 8 -size 8 -relax ACLwSyncdRR -safe Fre

Generator produced 3 tests

Relaxations tested: {ACLwSyncdRR}

where we have for instance:

% cat iriw-lwsync001.litmus

PPC iriw-lwsync001

"Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR"

Cycle=Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR

Relax=ACLwSyncdRR

34

Safe=Fre

{

0:r2=z; 0:r4=x; 1:r2=x;

2:r2=x; 2:r4=y; 3:r2=y;

4:r2=y; 4:r4=z; 5:r2=z;

}

P0 | P1 | P2 | P3 | P4 | P5 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwsync | stw r1,0(r2) | lwsync | stw r1,0(r2) | lwsync | stw r1,0(r2) ;

lwz r3,0(r4) | | lwz r3,0(r4) | | lwz r3,0(r4) | ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0 /\ 4:r1=1 /\ 4:r3=0)

7 Test variations with diycross

The tool diycross has an interface similar to diyone, except it accepts list of candidate relaxations where
diyone accepts single candidate relaxations. The new tool produces the test resulting by “cross producting”
the lists. For instance, one can generate all variations on the IRIW test (see Sec. 4.3) that involve data
dependencies and the lightweight barrier lwsync as follows:

% diycross -arch PPC -name IRIW Rfe DpdR,LwSyncdRR Fre Rfe DpdR,LwSyncdRR Fre

Generator produced 3 tests

% ls

@all IRIW+addrs.litmus IRIW+lwsync+addr.litmus IRIW+lwsyncs.litmus

diycross outputs the index file @all that lists the test source files, and three tests, with names we believe to
be self-explanatory:

% cat IRIW+lwsync+addr.litmus

PPC IRIW+lwsync+addr

"Rfe LwSyncdRR Fre Rfe DpAddrdR Fre"

Cycle=Rfe LwSyncdRR Fre Rfe DpAddrdR Fre

{

0:r2=y;

1:r2=y; 1:r4=x;

2:r2=x;

3:r2=x; 3:r5=y;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) ;

stw r1,0(r2) | lwsync | stw r1,0(r2) | xor r3,r1,r1 ;

| lwz r3,0(r4) | | lwzx r4,r3,r5 ;

exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r4=0)

Users may use the special keywords allRR, allRW, allWR and allWW to specify the set of all existing
program order candidate relaxations between the specified “R” or “W”. For instance, we get the complete
variations on IRIW by:

% diycross -arch PPC -name IRIW Rfe allRR Fre Rfe allRR Fre

Generator produced 28 tests

% ls

@all

IRIW.litmus

IRIW+addr+po.litmus

35

IRIW+lwsync+addr.litmus

...

IRIW+isyncs.litmus

8 Identifying coherence orders with observers

We first produce the “four writes” test 2+2W for Power:

% diyone -name 2+2W -arch PPC PodWW Wse PodWW Wse

% cat 2+2W.litmus

PPC 2+2W

"PodWW Wse PodWW Wse"

{ 0:r2=x; 0:r4=y; 1:r2=y; 1:r4=x; }

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

exists (x=2 /\ y=2)

Test 2+2W is the Power version of X86 test ws of Sec. 4.3. In that section, we argued that the final condition
exists (x=2 /\ y=2) suffices to identify the coherence orders 0, 1, 2 for locations x and y. As a consequence,
a positive final condition reveals the occurrence of the specified cycle: Wse PodWW Wse PodWW.

8.1 Simple observers

Observers provide an alternative, perhaps more intuitive, means to identify coherence orders: an observer
simply is an additional thread that performs several loads from the same location in sequence. Here, loading
value 1 and then value 2 from location x identifies the coherence order 0, 1, 2. The command line switch
-obs force commands the production of observers (test 2+2WObs):

% diyone -name 2+2WObs -obs force -obstype straight -arch PPC PodWW Wse PodWW Wse

% cat 2+2WObs.litmus

PPC 2+2WObs

"PodWW Wse PodWW Wse"

{ 0:r2=x; 1:r2=y; 2:r2=x; 2:r4=y; 3:r2=y; 3:r4=x; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | lwz r1,0(r2) | li r1,2 | li r1,2 ;

lwz r3,0(r2) | lwz r3,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

| | li r3,1 | li r3,1 ;

| | stw r3,0(r4) | stw r3,0(r4) ;

exists (0:r1=1 /\ 0:r3=2 /\ 1:r1=1 /\ 1:r3=2)

Thread P0 observes location x, while thread P1 observes location y. With respect to 2+2W, final condition
has changed, the direct observation of the final contents of locations x and y being replaced by two successive
observations of the contents of x and y.

It should first be noticed that the reasoning above assumes that having the same thread to read 1 from
say x and then 2 implies that 1 takes place before 2 in the coherence order of x. This need not be the case
in general — although it holds for Power. Moreover, running 2+2W and 2+2WObs yields contrasted results.
While a positive conclusion is immediate for 2+2W, we were not able to reach a similar conclusion for 2+2WObs.
As a matter of fact, 2+2WObs yielding Ok stems from the still-to-be-observed coincidence of several events:
both observers threads must run at the right pace to observe the change from 1 to 2, while the cycle must
indeed occur.

36

8.2 More observers

8.2.1 Fences and loops in observers

A simple observer consisting of loads performed in sequence is a straight observer. We define two additional
sorts of observers: fenced observers, where loads are separated by the strongest fence available, and loop

observers, which poll on location contents change. Those are selected by the homonymous tags given as
arguments to the command line switch -obstype. For instance, we get the test 2+2WObsFenced by:

% diyone -name 2+2WObsFenced -obs force -obstype fenced -arch PPC PodWW Wse PodWW Wse

% cat 2+2WObsFenced.litmus

PPC 2+2WObsFenced

"PodWW Wse PodWW Wse"

{ 0:r2=x; 1:r2=y; 2:r2=x; 2:r4=y; 3:r2=y; 3:r4=x; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | lwz r1,0(r2) | li r1,2 | li r1,2 ;

sync | sync | stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) | li r3,1 | li r3,1 ;

| | stw r3,0(r4) | stw r3,0(r4) ;

exists (0:r1=1 /\ 0:r3=2 /\ 1:r1=1 /\ 1:r3=2)

Invoking diyone as “diyone -obs force -obstype loop ...” yields the additional test 2+2WObsLoop. The
html version of this document provides details.

8.2.2 Local observers

With local observers, coherence order is observed by the test threads. This implies changing the tests, and
some care must be exercised when interpreting results.

The idea is as follows: when two threads are connected by a Wse candidate relaxation, meaning that the
first thread ends by writing v to some location ℓ and that the second threads starts by writing v + 1 to the
same location ℓ, we add an observing read of location ℓ at the end of the first thread. Then, reading v + 1
means that the write by the first thread precedes the write by the second thread in ℓ coherence order. More
concretely, we instruct diy generators to emit such local observers with option -obs local:

% diyone -name 2+2WLocal -obs local -obstype straight -arch PPC PodWW Wse PodWW Wse

% cat 2+2WLocal.litmus

PPC 2+2WLocal

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

lwz r5,0(r4) | lwz r5,0(r4) ;

exists

(0:r5=2 /\ 1:r5=2)

With respect to 2+2W, final condition has changed, the direct observation of the final contents of locations y
and x being replaced local observation of y by thread 0 and local observation of x by thread 1.

Based for instance on the test execution witness, whose only SC-violation cycle is the same as as for
2+2W,

37

a: W[x]=2

b: W[y]=1

f: R[x]=2

c: R[y]=2

d: W[y]=2

e: W[x]=1

po:0

rf

rf

po:0

ws

rf po:1rf

ws

po:1

one may argue that tests 2+2W and 2+2WLocal are equivalent, in the sense that both are allowed or
both are forbidden by a model or machine.

Local observers can also be fenced or looping. For instance, one produces 2+2WLocalFenced, the
fenced local observer version of 2+2W as follows:

% diyone -name 2+2WLocalFenced -obs local -obstype fenced -arch PPC PodWW Wse PodWW Wse

% cat 2+2WLocalFenced.litmus

PPC 2+2WLocalFenced

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

sync | sync ;

lwz r5,0(r4) | lwz r5,0(r4) ;

exists

(0:r5=2 /\ 1:r5=2)

While one produces 2+2WLocalLoop, the looping local observer version of 2+2W as follows:

% diyone -name 2+2WLocalLoop -obs local -obstype loop -arch PPC PodWW Wse PodWW Wse

% cat 2+2WLocalLoop.litmus

PPC 2+2WLocalLoop

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

li r6,200 | li r6,200 ;

L00: | L02: ;

38

lwz r5,0(r4) | lwz r5,0(r4) ;

cmpwi r5,1 | cmpwi r5,1 ;

bne L01 | bne L03 ;

addi r6,r6,-1 | addi r6,r6,-1 ;

cmpwi r6,0 | cmpwi r6,0 ;

bne L00 | bne L02 ;

L01: | L03: ;

exists (0:r5=2 /\ 1:r5=2)

In the code above, observing loads are attempted at most 200 time or until a value different from 1 is read.

8.2.3 Performance of observers

As an indication of the performance of the various sorts of observers, the following table summarises a litmus
experiment performed on a 8-cores 4-ways SMT Power7 machine machine.

2+2W 2+2WObs 2+2WObsFenced 2+2WObsLoop 2+2WLocal 2+2WLocalFenced

Positive 2.2M/160M 0/80M 326/80M 25k/80M 2/160M 34k/160M

The row “Positive” shows the number of observed positive outcomes/total number of outcomes produced.
For instance, in the case of 2+2W, we observed the positive outcome x=2 /\ y=2 more than 2 millions
times out of a total of 160 millions outcomes. As a conclusion, all techniques achieve decent results, except
straight observers.

8.3 Three stores or more

In test 2+2W the coherence orders sequence two writes. If there are three writes or more to the same
location, it is no longer possible to identify a coherence order by observing the final contents of the memory
location involved. In other words, observers are mandatory.

The argument to the -obs switch commands the production of observers. It can take four values:

accept Produce observers when absolutely needed. More precisely, given memory location x, no equality
on x appears in the final condition for zero or one write to x, one such appears for two writes, and
observers are produced for three writes or more.

avoid Never produce observers, i.e. fail when there are three writes to the same location.

force Produce observers for two writes or more.

local Always produce local observers.

With diyone, one easily build a three writes test as for instance the following W5:

% diyone -obs accept -obstype fenced -arch PPC -name W5 Wse Wse PodWW Wse PodWW

% cat W5.litmus

PPC W5

"Wse Wse PodWW Wse PodWW"

{ 0:r2=y; 1:r2=y; 1:r4=x; 2:r2=x; 2:r4=y; 3:r2=y; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,3 | li r1,2 | li r1,2 ;

sync | stw r1,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | li r3,1 | li r3,1 | ;

sync | stw r3,0(r4) | stw r3,0(r4) | ;

lwz r4,0(r2) | | | ;

exists (x=2 /\ 0:r1=1 /\ 0:r3=2 /\ 0:r4=3)

39

As apparent from the code above, we have a fenced observer thread on y (P0), while the final state of x is
observed directly (x=2). The command line switch -obs force would yield two observers, while -obs avoid

would lead to failure.
With command line switch -obs local we get three local observations of coherence, which suffice to

reconstruct the complete coherence orders:

% diyone -obs local -obstype fenced -arch PPC -name W5Local Wse Wse PodWW Wse PodWW

chi% cat W5Local.litmus

PPC W5Local

"Wse Wse PodWW Wse PodWW"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

2:r2=x;

}

P0 | P1 | P2 ;

li r1,3 | li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 | sync ;

stw r3,0(r4) | stw r3,0(r4) | lwz r3,0(r2) ;

sync | sync | ;

lwz r5,0(r4) | lwz r5,0(r4) | ;

exists (0:r5=2 /\ 1:r5=2 /\ 2:r3=3)

9 Command usage

The diy suite consists in four main tools:

diyone generates one litmus test from the specification of a violation of the sequential consistency memory
model as a cycle — see Sec. 4.2.

diycross generates variations of diyone style tests — see Sec. 7.

diy generates several tests, aimed at confirming that candidate relaxations are relaxed or safe—see Sec. 5.

readRelax Extract relevant information from the results of tests—see Sec. 5.2.

9.1 A note on test names

We have designed a simple naming scheme for tests. A normalised test name decomposes first as a family
name, and second as a description of program-order (or internal) candidate relaxations.

9.1.1 Family names

Cycles (and thus tests) are first grouped by families. Family names describe test structure, based upon exter-
nal communication candidates relaxations. More specifically, external communication candidates relaxations
suffice to settle the directions (W or R) of first and last events of threads, considering the case when those two
events are the same. For instance, consider the cycle “PodWW Rfe PodRR Fre”: there are two threads in
the corresponding test (as there are two external communication candidate relaxations), one thread starts
and ends with a write (written WW), while the other thread starts and ends with a read (written RR). The
family name is thus WW+RR, (or RR+WW, but we choose the former). For reference, a normalised family name is
the minimal amongst the representations of a given cycle, following the lexical order derived from the order
W < WW < RR < RW < WR < R.

40

The most common families have nicknames, which are defined by this document4. For instance, consider
the test whose cycle is “PodWR Fre PodWR Fre”. The family name is WR+WR, as this is a two-thread test,
both threads starting with a write and ending with a read. The nickname for this family is, as we already
know SB (store-buffering). Here is the list of nicknames and family names for two thread tests:

2+2W WW+WW PodWW Wse PodWW Wse
LB RW+RW PodRW Rfe PodRW Rfe
MP WW+RR PodWW Rfe PodRR Fre
R WW+WR PodWW Wse PodWR Fre
S WW+RW PodWW Rfe PodRW Wse
SB WR+WR PodWR Fre PodWR Fre

Isolated writes (and reads) originate from the combinations of communication relaxations, for instance
[Fre,Rfe]. They appear as “W” (and R) in family names. For instance, “Rfe PodRR Fre Rfe PodRR Fre”
contains two such isolated writes, its name is thus W+RR+W+RR and its nickname is, as we know, IRIW
(Independent reads of independent writes). The test “Rfe PodRW Rfe PodRR Fre” contains one isolated
write, as apparent from this diagram:

Test WRC

Thread 0
a: W[x]=1b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1
Thread 2

e: R[x]=0
rf po rf porf

The family name is thus W+RW+RR and the nickname is WRC (Write to Read Causality).

9.1.2 Descriptive names for variants

Every family has a prototype, homonymous test where every thread code consists in one (for W or R) or
two memory accesses to different locations (for WW, WR etc.). For instance, the MP test is derived from the
cycle “PodWW Rfe PodRR Fre”. Variants are described by tags that illustrates the various program-order
relaxations: they appear after the family name, still with “+” as a separation. For instance the test derived
from “LwSyncdWW Rfe DpAddrdR Fre” is named MP+lwsync+addr.

When all threads have the same tag tag, the test name is abbreviated as Family+tag s. For instance, the
test MP+lwsync+lwsync (“LwSyncdWW Rfe LwSyncdRR Fre”) is in fact MP+lwsyncs. Additionally,
the tag pos (all po’s) is omitted, in order to yield family names for the prototype tests — cf. MP whose
name would have been MP+pos otherwise.

For the sake of terseness, tags do not describe program-order relaxations completely. For instance both
DpAddrdR and DpAddrdW (address dependency to read and write, respectively) have the same tag, addr.
It does not harm for simple tests, as the missing direction can be inferred from the family name. Consider
for instance MP+lwsync+addr and LB+lwsync+addr.

Test MP+lwsync+addr

Thread 0
a: W[x]=1

b: W[y]=1

c: R[y]=1
Thread 1

d: R[x]=0
lwsync rf

fr addr
rf

Test LB+lwsync+addr

Thread 0
a: R[x]=1

b: W[y]=1

c: R[y]=1
Thread 1

d: W[x]=1
lwsync rfrf addr

4http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf

41

The naming scheme extends to cycles with consecutive program-order relaxations, by separating tags
with “-” when they follow one another: for instance “LwSyncdWW Rfe DpAddrdR PodRR Fre” is named
MP+lwsync+addr-po. Unfortunately, the current naming scheme falls short in supplying non-ambiguous
names to all tests. For instance, “LwSyncdWWRfe DpAddrdW PodWR Fre” is also namedMP+lwsync+addr-

po. In that situation tools will either fail or silently add a numeric suffix, depending on the boolean -addnum

option.

% diycross -addnum false LwSyncdWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Fatal error: Duplicate name MP+lwsync+addr-po

% diycross -addnum true LwSyncdWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Generator produced 2 tests

% cat @all

diycross -addnum true LwSyncdWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

MP+lwsync+addr-po.litmus

MP+lwsync+addr-po001.litmus

As a result, we get the two tests: MP+lwsync+addr-po and MP+lwsync+addr-po001.

Test MP+lwsync+addr-po

Thread 0
a: W[x]=1

b: W[y]=1

c: R[y]=1
Thread 1

d: R[z]=0

e: R[x]=0

lwsync rf addr
fr po
rf
rf

Test MP+lwsync+addr-po001

Thread 0
a: W[x]=1

b: W[y]=1

c: R[y]=1
Thread 1

d: W[z]=1

e: R[x]=0

lwsync rf addrfr
porf

Future versions of diy may solve this issue in a more satisfying manner. At the moment, users are advised
not to rely too much on the automatic naming scheme. Users may name tests in a non-ambiguous fashion
by (1) specifying an explicit family name (-name name) and (2) selecting the numeric scheme (-num true):

% diycross -name MP+X -num true LwSyncdWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Generator produced 2 tests

The diycross generator outputs the same tests as above, with names MP+X000 and MP+X001.

9.2 Common options

All diy test generators accept the following documented command-line options:

-v Be verbose, repeat to increase verbosity.

-version Show version number and exit.

-arch (X86|PPC|ARM) Set architecture. Default is PPC. ARM support is experimental.

-o <dest> Redirect output to <dest>. This option applies when tools generate a set of tests and an index
file @all, .i.e. in all situations except for diyone simplest operating mode.

If argument <dest> is an archive (extension .tar) or a compressed archive (extension .tgz), the tool
builds an archive. Otherwise, <dest> is interpreted as the name of an existing directory. Default is
“.”, that is tool output goes into the current directory.

-obs <accept|avoid|force|local> Management of observers, default is avoid. See Sec. 8.3.

-obstype (fenced|loop|straight) Style of observers, default is fenced. See Sec. 8.2.

42

-optcond Optimise conditions by disregarding the values of loads that are neither the target of Rf, nor the
source of Fr. This is the default.

-nooptcond Do not optimise conditions.

-neg <bool> Negate final condition, default is false.

-c <bool> Avoid equivalent cycles. Default is true. Setting -c true is intended for debug.

The naming of tests is controlled by the following options:

-name <name> Use name for naming tests, the exact consequences depend on the generator. By default the
generator has no name available.

-num <bool> Use numeric names, i.e. from a base name ¡base¿ the generator will name tests as <base>000,
<base>001 etc. The default depends upon the generator.

-addnum <bool> If true, when faced with tests whose name <name> has already been given, use names
<name>001, <name>002, etc. Otherwise fail in the same situation. The default depends upon the
generator.

-fmt <n> Size of numerical suffixes, default is 3.

9.3 Usage of diyone

The tool diyone has two operating modes. The selected mode depends on the presence of command-line
arguments,

In the first operating mode, diyone takes a non-empty list of candidate relaxations as arguments and
outputs a litmus test. Note that diyone may fail to produce the test, with a message that briefly details the
failure.

% diyone Rfe Rfe PodRR

Test a [Rfe Rfe PodRR] failed:

Impossible direction PodRR Rfe

In this mode, -name <name> sets the name of the test to <name> and output it into file <name>.litmus.
If absent, the test name is A and output goes to standard output.

Otherwise, i.e. when there are no command-line arguments, diyone reads the standard input and generates
the tests described by the lines it reads. Each line starts with a test name name, followed by “:”, followed
by a list of candidate relaxations RS. Then, diyone acts as if invoked as diyone opts -name name RS.

The tool diyone accepts the following documented option:

-norm Normalise tests and give them normalised names.

In the first operating mode (when a cycle is explicitly given) the test will be named with a family name
and a descriptive name. In the second operating mode, numeric names are used, base being either given
explicitly (with option -name <base>) or being a normalised family name.

9.4 Usage of diycross

diycross produces several tests by “cross producting” lists of candidate relaxations given as arguments, see
Sec 7. diycross also produces an index file @all that lists all produced litmus source files.

If option -name <name> is given, it sets the family name of generated tests, otherwise standard family
names are used (cf. Sec. 9.1). By default descriptive names are used (i.e. -num false) and diycross will fail
if two different tests have the same name (i.e. -addnum false):

43

% diycross PodWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Fatal error: Duplicate name MP+po+addr-po

Should this happen users can resort either to numeric names,

%diycross -num true PodWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Generator produced 2 tests

con% ls

@all MP000.litmus MP001.litmus

or to disambiguating numeric suffixes.

%diycross -addnum true PodWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Generator produced 2 tests

con% ls

@all MP+po+addr-po001.litmus MP+po+addr-po.litmus

9.5 Usage of diy

As diycross, diy produce several files, hence naming issues are critical. By default, diy uses family names and
the numeric naming scheme (-num true). Users can specify a family name family for all tests with -name

family , or attempt using the descriptive names of Sec 9.1 with -num false. Moreover, diy produces an
index file @all that lists the file names of all tests produced.

The tool diy also accepts the following, additional, documented options.

-conf <file> Read configuration file <file>. A configuration file consists in a list of options, one option
per line. Lines introduced by # are comments and are thus ignored.

-size <n> Set the maximal size of cycles. Default is 6.

-exact Produce cycles of size exactly <n>, in place of size up to <n>.

-nprocs <n> Reject tests with more than <n> threads. Default is 4.

-eprocs Produce tests with exactly <n> threads, where <n> is set above.

-ins <n> Reject tests as soon as the code of one thread consists of more than <n> instructions. Default is 4.

-relax <relax-list> Set relax list. Default is empty. The syntax of <relax-list> is a comma (or space)
separated list of candidate relaxations.

-mix <bool> Mix the elements of the relax list (see below), default false.

-maxrelax <n> In mix mode, upper bound on the number of different candidate relaxations tested together.
Default is 100

-safe <relax-list> Set safe list. Default is empty.

-mode (critical|sc|free) Control generation of cycles, default sc. Critical mode offers predictive control
on cycle generation (see below), and is activated when diy is invoked by the automated front-end dont.

-cumul <bool> Permit implicit cumulativity, i.e. authorise building up the sequence Rfe followed by a
fence, or the reverse. Default is true.

The relax and safe lists command the generation of cycles as follows:

1. When the relax list is empty, cycles are built from the candidate relaxations of the safe list.

44

2. When the relax list is of size 1, cycles are built from its single element r and from the elements of the
safe list. Additionally, the cycle produced contains r at least once.

3. When the relax list is of size n, with n > 1, the behaviour of diy depends on the mix mode:

(a) By default (-mix false), diy generates n independent sets of cycles, each set being built with
one relaxation from the relax list and all the relaxations in the safe list. In other words, diy on a
relax list of size n behaves similarly to n runs of diy on each candidate relaxation in the list.

(b) Otherwise (-mix true), diy generates cycles that contains at least one element from the relax list,
including some cycles that contain different relaxations from the relax list. The cycles will contain
at most m different elements from the relax list, where m is specified with option “-maxrelaxm”.

Generally speaking, diy generates “some” cycles and does not generate “all” cycles (up to a certain size
e.g.). In (default) sc mode, diy performs some optimisation, most of which we leave unspecified. As an
exception to this non-specification, diy is guaranteed not to generate redundant elementary communication
relaxation in the following sense: let us call Com the union of Ws, Rf and Fr (the e|i specification is irrelevant
here). Ws being transitive and by definition of Fr, one easily shows that the transitive closure Com+ of Com
is the union of Com plus [Ws,Rf] (Ws followed by Rf) plus [Fr,Rf]. As a consequence, maximal subsequences
of communication relaxations in diy cycles are limited to single relaxations (i.e. Ws, Rf and Fr) and to the
above mentioned two sequences (i.e. [Ws,Rf] and [Fr,Rf]). For instance, [Ws,Ws] and [Fr,Ws] should never
appear in diy generated cycles. However, such subsequences can be generated on an individual basis with
diyone, see the example of W5 in Sec 8.3.

In critical mode (-mode critical), cycles are strictly specified as follows:

1. Communication candidate relaxations sequences are limited to Rf,Fr,Ws,[Ws,Rf] and [Fr,Rf], as in sc
mode.

2. No two internal5 candidate relaxations follow one another.

3. If the option -cumul false is specified, diy will not construct the sequence of Rfe followed by a fence
(or B-cumulativity) candidate relaxation or of a fence (or A-cumulativity) candidate relaxation followed
by Rfe.

4. None of the rules above applies to the internal sequences of composite candidate relaxations. For
instance, if [Rfi,PodRR] is given as a candidate relaxation, the sequence “Rfi,PodRR” appears in
cycles.

The cycles described above are the critical cycles of [4].
In free mode (-mode free), cycles are strictly specified as follows:

1. Communication candidate relaxations sequences are limited to Rf,Fr,Ws,[Ws,Rf] and [Fr,Rf], as in sc
and critical mode.

9.6 Usage of readRelax

readRelax is a simple tool to extract relevant information out of litmus run logs of tests produced by the diy
generator. For a given run of a given litmus test, the relevant information is:

• Whether the test yielded Ok or not,

• An optional candidate relaxation, which is the one given as argument to diy option -relax at test
build time, or none.

• The safe list relevant to the given test, i.e. the safe candidate relaxations that appear in the tested
cycle.

5That is, the source and target accesses are by the same processor.

45

See Sec. 5.2 for an example.
The tool readRelax takes file names as arguments. If no argument is present, it reads a list of file names

on standard input, one name per line.

10 Additional tools: extracting cycles and classification

When non-standard family names or numeric names are used, it proves convenient to rename tests with the
standard naming scheme. We provide two tools to do so: mcycles that extracts cycles from litmus source
files and classify that normalises and renames cycles.

For instance, one can use diy to generate all, simple, critical tests up to three threads for X86 with the
following configuration file X.conf

-arch X86

-name X

-nprocs 3

-size 6

-safe Pod**,Fre,Rfe,Wse

-mode critical

% diy -conf X.conf

Generator produced 23 tests

% ls

@all X003.litmus X007.litmus X011.litmus X015.litmus X019.litmus X.conf

X000.litmus X004.litmus X008.litmus X012.litmus X016.litmus X020.litmus

X001.litmus X005.litmus X009.litmus X013.litmus X017.litmus X021.litmus

X002.litmus X006.litmus X010.litmus X014.litmus X018.litmus X022.litmus

Cycles are extracted with mcycles, which takes the index file @all as argument:

% mcycles @all

X000: Wse PodWR Fre PodWR Fre PodWW

X001: Rfe PodRR Fre PodWR Fre PodWW

X002: Wse PodWR Fre PodWW

X003: Wse PodWW Wse PodWR Fre PodWW

X004: Rfe PodRW Wse PodWR Fre PodWW

X005: Rfe PodRR Fre PodWW

X006: Wse PodWW Rfe PodRR Fre PodWW

X007: Rfe PodRW Rfe PodRR Fre PodWW

X008: Wse Rfe PodRR Fre PodWW

X009: Wse PodWW Wse PodWW

...

The output of mcycles can be piped into classify for family classification:

% mcycles @all | classify -arch X86

2+2W

X009 -> 2+2W : PodWW Wse PodWW Wse

3.2W

X010 -> 3.2W : PodWW Wse PodWW Wse PodWW Wse

3.LB

X020 -> 3.LB : PodRW Rfe PodRW Rfe PodRW Rfe

3.SB

X016 -> 3.SB : PodWR Fre PodWR Fre PodWR Fre

46

ISA2

X007 -> ISA2 : PodWW Rfe PodRW Rfe PodRR Fre

LB

X019 -> LB : PodRW Rfe PodRW Rfe

MP

X005 -> MP : PodWW Rfe PodRR Fre

...

Notice that classify accepts the arch option, as it needs to parse cycles.
Finally, one can normalise tests, using normalised names by piping mcycles output into diyone with options

-norm -num false:

% mkdir src

% mcycles @all | diyone -arch X86 -norm -num false -o src

Generator produced 23 tests

% ls src

2+2W.litmus @all R.litmus WRC.litmus WRW+WR.litmus Z6.2.litmus

3.2W.litmus ISA2.litmus RWC.litmus WRR+2W.litmus WWC.litmus Z6.3.litmus

3.LB.litmus LB.litmus SB.litmus WRW+2W.litmus Z6.0.litmus Z6.4.litmus

3.SB.litmus MP.litmus S.litmus W+RWC.litmus Z6.1.litmus Z6.5.litmus

Alternatively, one may instruct classify to produce output for diyone. In that case one should pass option
-diyone to classify so as to instruct it to produce output that is parsable by diyone:

% rm -rf src && mkdir src

% mcycles @all | classify -arch X86 -diyone | diyone -arch X86 -o src

Generator produced 23 tests

% ls src

2+2W.litmus @all R.litmus WRC.litmus WRW+WR.litmus Z6.2.litmus

3.2W.litmus ISA2.litmus RWC.litmus WRR+2W.litmus WWC.litmus Z6.3.litmus

3.LB.litmus LB.litmus SB.litmus WRW+2W.litmus Z6.0.litmus Z6.4.litmus

3.SB.litmus MP.litmus S.litmus W+RWC.litmus Z6.1.litmus Z6.5.litmus

10.1 Usage of mcycles

The tool mcycles has no options and takes litmus source files or index files as command line arguments. It
outputs a list of lines to standard output. Each lines starts with a test name, suffixed by “:”, then the cycle
of the named test. Notice that this format is the input format to diyone in its second operating mode — see
Sec. 9.3.

It is important to notice that, for mcycles to extract cycles, those must be present as meta-information in
source files. In practice, this means that mcycles operates normally on sources produced by diyone, diycross
and diy. Moreover only one instance of a given cycle will be output.

10.2 Usage of classify

The tool classify reads its standard input, interpreting is as a list of cycles in the output format of mcycles.
It normalises and classifies those cycles. The tool classify accepts the following documented options:

-arch (X86|PPC|ARM) Set architecture. Default is PPC. ARM support is experimental.

-u Instruct classify to fail when two tests have the same normalised name. Otherwise classify will output
one line per test, regardless of duplicate names.

-diyone Output a normalised list of names and cycles, which is legal input for diyone.

47

Part III

Some examples

In the following experiment accounts we describe both how we generate tests and how we run them on
various machines under various conditions.

11 Running several tests at once, changing critical parameters

In this section we describe an experiment on changing the stride (cf Sec. 2.1). This usage pattern applies to
many situations, where a series of test is compiled once and run many times under changing conditions.

We assume a directory tst-x86, that contains a series of litmus tests and an index file @all. Those
tests where produced by the diy tool (see Sec. 5). They are 2 thread tests that exercise various relaxed
behaviour of x86 machines. More specifically, diy is run as “diy -conf X.conf”, where X.conf is the
following configuration file

-arch X86

-name X

-safe Rfe,Fre,Wse,PodR*,PodWW,MFencedWR

-relax PodWR,[Rfi,PodRR]

-mix true

-mode critical

-size 5

-nprocs 2

As described in Sec. 9.5, diy will generate all critical cycles of size at most 5, spanning other two threads,
and including PodWR, [Rfi,PodRR] or both. In effect, as x86 machines follow the TSO model that relaxes
write to read pairs, all produced tests should a priori validate.

We test some x86-64 machine, using the following x86-64.cfg litmus configuration file:

#Machine/OS specification

os = linux

word = w64

#Test parameters

size_of_test = 1000

number_of_run = 10

memory = direct

stride = 1

The number of available logical processors is unspecified, it thus defaults to 1, leading to running one instance
of the test only (cf parameter a in Sec. 2.1)

We invoke litmus as follows, where run is a pre-existing empty directory:

% litmus -mach x86-64 -o run tst-x86/@all

The directory run now contains C-source files for the tests, as well as some additional files:

% ls run

comp.sh outs.c README.txt utils.c X000.c X002.c X004.c X006.c

Makefile outs.h run.sh utils.h X001.c X003.c X005.c

48

One notices a short README.txt file, two scripts to compile (com.sh) and run the tests (run.sh), and a
Makefile. We use the latter to build test executables:

% cd run

% make -j 8

gcc -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -O2 -c outs.c

gcc -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -O2 -c utils.c

gcc -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -S X000.c

...

gcc -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -o X005.exe outs.o utils.o X005.s

gcc -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -o X006.exe outs.o utils.o X006.s

rm X005.s X004.s X006.s X000.s X001.s X002.s X003.s

This builds the seven tests X000.exe to X006.exe. The size parameters (size_of_test = 1000 and
number_of_run = 10) are rather small, leading to fast tests:

% ./X000.exe

Test X000 Allowed

Histogram (2 states)

5000 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

5000 :>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

No

...

Condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) is NOT validated

...

Observation X000 Never 0 10000

Time X000 0.01

However, the test fails, in the sense that the relaxed outcome targeted by X000.exe is not observed, as can
be seen quite easily from the “Observation Never...” line above .

To observe the relaxed outcome, it happens it suffices to change the stride value to 2:

% ./X000.exe -st 2

Test X000 Allowed

Histogram (3 states)

33 :>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=0;

4989 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

4978 :>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

Ok

...

Condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) is validated

...

Observation X000 Sometimes 33 9967

Time X000 0.00

We easily perform a more complete experiment with the stride changing from 1 to 8, by running the
run.sh script, which transmits its command line options to all test executables:

% for i in $(seq 1 8)

> do

> sh run.sh -st $i > X.0$i

> done

Run logs are thus saved into files X.01 to X.08. The following table summarises the results:

49

X.01 X.02 X.03 X.04 X.05 X.06 X.07 X.08

X000 0/10k 21/10k 0/10k 17/10k 0/10k 19/10k 2/10k 40/10k
X001 0/10k 108/10k 0/10k 77/10k 2/10k 29/10k 0/10k 29/10k
X002 0/10k 2/10k 0/10k 6/10k 0/10k 7/10k 0/10k 5/10k
X003 0/10k 4/10k 2/10k 1/10k 0/10k 5/10k 0/10k 11/10k
X004 0/10k 4/10k 0/10k 33/10k 0/10k 10/10k 0/10k 8/10k
X005 0/10k 1/10k 0/10k 0/10k 0/10k 5/10k 0/10k 4/10k
X006 0/10k 8/10k 0/10k 9/10k 0/10k 11/10k 1/10k 12/10k

For every test and stride value cells show how many times the targeted relaxed outcome was observed/total
number of outcomes. One sees that even stride value perfom better — noticeably 2, 6 and 8. Moreover
variation of the stride parameters permits the observation of the relaxed outcomes targeted by all tests.

We can perform another, similar, experiment changing the s (size_of_test) and r (number_of_run)
parameters. Notice that the respective default values of s and r are 1000 and 10, as specified in the
x86-64.cfg configuration file. We now try the following settings:

% sh run.sh -a 16 -s 10 -r 10000 > Y.01

% sh run.sh -a 16 -s 100 -r 1000 > Y.02

% sh run.sh -a 16 -s 1000 -r 100 > Y.03

% sh run.sh -a 16 -s 10000 -r 10 > Y.04

% sh run.sh -a 16 -s 100000 -r 1 > Y.05

The additional -a 16 command line option informs test executable to use 16 logical processors, hence running
8 instances of the “X” tests concurrently, as those tests all are 2 thread tests. This technique of flooding
the tested machine obviously yields better ressource usage and, according to our experience, favors outcome
variability.

The following table summarises the results:

Y.01 Y.02 Y.03 Y.04 Y.05

X000 2.3k/800k 602/800k 465/800k 551/800k 297/800k
X001 2.9k/800k 632/800k 774/800k 667/800k 315/800k
X002 633/800k 55/800k 5/800k 7/800k 0/800k
X003 1.2k/800k 182/800k 152/800k 390/800k 57/800k
X004 2.4k/800k 974/800k 1.5k/800k 2.4k/800k 1.6k/800k
X005 239/800k 21/800k 8/800k 0/800k 1/800k
X006 912/800k 129/800k 102/800k 143/800k 14/800k

Again, we observe all targeted relaxed outcomes. In fact, x86 relaxations are relatively easy to observe on
our 16 logical core machine.

Another test statistic of interest is efficiency, that is the number of targeted outcomes observed per
second:

Y.01 Y.02 Y.03 Y.04 Y.05

X000 285 2.2k 6.6k 9.2k 4.2k
X001 366 2.4k 13k 11k 5.2k
X002 78 212 71 140
X003 150 650 2.5k 7.8k 950
X004 288 3.7k 25k 59k 32k
X005 28 72 114 17
X006 118 461 1.7k 2.9k 280

As we can see, although the setting -s 10 -r 10000 yields the most relaxed outcomes, it may not be
considered as the most efficient. Moreover, we see that tests X002 and X005 look more challenging than
others.

Finally, it may be interesting to classify the “X” tests:

50

% mcycles @all | classify -arch X86

R

X003 -> R+po+rfi-po : PodWW Wse Rfi PodRR Fre

X006 -> R : PodWW Wse PodWR Fre

SB

X000 -> SB+rfi-pos : Rfi PodRR Fre Rfi PodRR Fre

X001 -> SB+rfi-po+po : Rfi PodRR Fre PodWR Fre

X002 -> SB+mfence+rfi-po : MFencedWR Fre Rfi PodRR Fre

X004 -> SB : PodWR Fre PodWR Fre

X005 -> SB+mfence+po : MFencedWR Fre PodWR Fre

One sees that two thread non-SC tests for x86 are basically of two kinds.

12 Cross compiling, affinity experiment

In this section we describe how to produce the C sources of tests on a machine, while running the tests on
another. We also describe a sophisticated affinity experiment.

We assume a directory tst-ppc, that contains a series of litmus tests and an index file @all. Those tests
where produced by the diycross tool. They illustrate variations of the classical IRIW test. More specifically,
the IRIW variations are produced as follows (see also Sec. 7):

% mkdir tst-ppc

% diycross -name IRIW -o tst-ppc Rfe PodRR,DpAddrdR,LwSyncdRR,EieiodRR,SyncdRR Fre Rfe PodRR,DpAddrdR,L

Generator produced 15 tests

We target a power7 machine described by the configuration file power7.cfg:

#Machine/OS specification

os = linux

word = w64

smt = 4

smt_mode = seq

#Test parameters

size_of_test = 1000

number_of_run = 10

avail = 0

memory = direct

stride = 1

affinity = incr0

One may notice the SMT (Simultaneaous Multi-Threading) specification: 4-ways SMT (smt=4), logical
processors pertaining to the same core being numbered in sequence (smt_mode = seq) — that is, logical
processors from the first core are 0, 1 ,2 and 3; logical processors from the second core are 4, 5 ,6 and 7; etc.
The SMT specification is necessary to enable custom affinity mode.

One may also notice the specification of 0 available logical processors (avail=0). As affinity support is
enabled (affinity=incr0), test executables will find themselves the number of logical processors available
on the target machine.

We compile tests to C-sources packed in archive a.tar and upload the archive to the target power7
machine as follows:

% litmus -mach power7 -o a.tar tst-ppc/@all

% scp a.tar power7:

Then, on power7 we unpack the archive and produce executable tests as follows:

51

power7% tar xmf a.tar

power7% make -j 8

gcc -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -O2 -c affinity.c

gcc -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -O2 -c outs.c

gcc -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -O2 -c utils.c

gcc -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -S IRIW+eieios.c

...

gcc -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -o IRIW.exe affinity.o outs.o utils.o IRIW.s

As a starter, we can check the effect of available logical processor detection and custom affinity control
(option +ca) by passing the command line option -v to one test executable, for instance IRIW.exe:

power7% ./IRIW.exe -v +ca

./IRIW.exe -v +ca

IRIW: n=8, r=10, s=1000, st=1, +ca, p=’0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,

thread allocation:

[23,22,3,2] {5,5,0,0}

[7,6,15,14] {1,1,3,3}

[11,10,5,4] {2,2,1,1}

[21,20,27,26] {5,5,6,6}

[9,8,25,24] {2,2,6,6}

[31,30,13,12] {7,7,3,3}

[19,18,29,28] {4,4,7,7}

[1,0,17,16] {0,0,4,4}

...

We see that our machine power7 features 32 logical processors numbered from 0 to 31 (cf p=... above)
and will thus run n=8 concurrent instances of the 4 thread IRIW test. Additionally allocation of threads
to virtual processors is shown: here, the four threads of the test are partitioned into two groups, which are
scheduled to run on different cores. For example, threads 0 and 1 of the first instance of the test will run on
logical processors 23 and 22 (core 5); while threads 2 and 3 will run on logical processors 3 and 2 (core 0).

Our experiment consists in running all tests with affinity increment (see Sec. 2.2.1) being from 0 and
then 1 to 8 (option -i i), as well as in random and custom affinity mode (options +ra and +ca):

power7% for i in $(seq 0 8)

> do

> sh run.sh -i $i > Z.0$i

> done

power7% sh run.sh +ra > Z.0R

power7% sh run.sh +ca > Z.0C

The following table summarises the results, with X meaning that the targeted relaxed outcome is observed:

52

Z.00 Z.01 Z.02 Z.03 Z.04 Z.05 Z.06 Z.07 Z.08 Z.0C Z.0R

IRIW X X X X X X X X X
IRIW+addr+po X X X X X
IRIW+addrs X X X
IRIW+eieio+addr X X X
IRIW+eieio+po X X X
IRIW+eieios X X X X
IRIW+lwsync+addr X X X
IRIW+lwsync+eieio X X X
IRIW+lwsync+po X X X X X
IRIW+lwsyncs X X
IRIW+sync+addr X X
IRIW+sync+eieio X X
IRIW+sync+lwsync X X
IRIW+sync+po X X X X X X
IRIW+syncs

On sees that all possible relaxed outcomes shows up with proper affinity control. More precisely, setting the
affinity increment to 2 or resorting to custom affinity result in the same effect: the first two threads of the
test run on one core, while the last two threads of the test run on a different core. As demonstrated by the
experiment, this allocation of test threads to cores suffices to favor relaxed outcomes for all tests except for
IRIW+syncs, where the sync fences forbid them.

13 Cross running, testing low end devices

Together, litmus options -gcc and -linkopt permit using a C cross compiler. For instance, assume that
litmus runs on machine A and that crossgcc, a cross compiler for machine C, is available on machine B.
Then, the following sequence of commands can be used to test machine C:

A% litmus -gcc crossgcc -linkopt -static -o C-files.tar ...

A% scp C-files.tar B:

B% tar xf C-files.tar

B% make

B% tar cf /tmp/C-compiled.tar .

B% scp /tmp/C-compiled.tar C:

C% tar xf C-compiled.tar

C% sh run.sh

Alternatively, using option -crossrun C, one can avoid copying the archive C-compiled.tar to machine C:

A% litmus -crossrun C -gcc crossgcc -linkopt -static -o C-files.tar ...

A% scp C-files.tar B:

B% tar xf C-files.tar

B% make

B% sh run.sh

More specifically, option -crossrun C instructs the run.sh script to upload executables individually to
machine C, just before running them. Notice that executables are removed from C once run.

We illustrate the crossrun feature by testing LB variations on an ARM-based Tegra3 (4 cores) tablet.
Test LB (load-buffering) exercises the following “causality” loop:

53

Test LB

Thread 0
a: R[x]=1

b: W[y]=1

c: R[y]=1
Thread 1

d: W[x]=1
po rfrf po

That is, thread 0 reads the values stored to location x by thread 1, thread 1 reads the values stored to
location y by thread 0, and both threads read “before” they write.

We shall consider tests with varying interpretations of “before”: the write may simply follow the read
in program order (po in test names), may depend on the read (data and addr), or they may be some fence
in-betweeen (isb and dmb). We first generate tests tst-armwith diycross:

% mkdir tst-arm

% diycross -arch ARM -name LB -o tst-arm PodRW,DpDatadW,DpCtrldW,ISBdRW,DMBdRW Rfe PodRW,DpDatadW,DpC

Generator produced 15 tests

We use the following, tegra3.cfg, configuration file:

#Tegra 3

size_of_test = 5k

number_of_run = 200

avail = 4

memory = direct

#Cross compilation

gcc = arm-linux-gnueabi-gcc

ccopts = -march=armv7-a -O2

linkopt = -static

Notice the “cross-compilation” section: the name of the gcc cross-compiler is arm-linux-gnueabi-gcc, while
the adequate version of the target ARM variant and static linking are specified.

We compile the tests from litmus source files to C source files in directory TST as follows:

% mkdir TST

% litmus -mach tegra3 -crossrun app_81@wifi-auth-188153:2222 tst-arm/@all -o TST

The extra option -crossrun app 81@wifi-auth-188153:2222 specifies the address to log onto the tablet
by ssh, which is connected on a local WiFi network and runs a ssh daemon that listens on port 2222.

We compile to executables and run them as as follows:

% cd TST

% make

arm-linux-gnueabi-gcc -Wall -std=gnu99 -march=armv7-a -O2 -pthread -O2 -c outs.c

arm-linux-gnueabi-gcc -Wall -std=gnu99 -march=armv7-a -O2 -pthread -O2 -c utils.c

arm-linux-gnueabi-gcc -Wall -std=gnu99 -march=armv7-a -O2 -pthread -S LB.c

...

% sh run.sh > ARM-LB.log

It is important to notice that the shell script run.sh runs on the local machine, not on the remote tablet.
Each test executable is copied (by using scp) to the tablet, runs there and is deleted (by using ssh), as can
be seen with sh “-x” option:

54

% sh -x run.sh 2>&1 >ARM-LB.log | grep -e scp -e ssh

+ scp -P 2222 -q ./LB.exe app_81@wifi-auth-188153:

+ ssh -p 2222 -q -n app_81@wifi-auth-188153 ./LB.exe -q && rm ./LB.exe

+ scp -P 2222 -q ./LB+data+po.exe app_81@wifi-auth-188153:

+ ssh -p 2222 -q -n app_81@wifi-auth-188153 ./LB+data+po.exe -q && rm ./LB+data+po.exe

...

Experiment results can be extracted from the log file quite easily, by reading the “Observation” informa-
tion from test output:

% grep Observation ARM-LB.log

Observation LB Sometimes 1395 1998605

Observation LB+data+po Sometimes 360 1999640

Observation LB+ctrl+po Sometimes 645 1999355

Observation LB+isb+po Sometimes 1676 1998324

Observation LB+dmb+po Sometimes 18 1999982

Observation LB+datas Never 0 2000000

Observation LB+ctrl+data Never 0 2000000

Observation LB+isb+data Sometimes 654 1999346

Observation LB+dmb+data Never 0 2000000

Observation LB+ctrls Never 0 2000000

Observation LB+isb+ctrl Sometimes 1143 1998857

Observation LB+dmb+ctrl Never 0 2000000

Observation LB+isbs Sometimes 2169 1997831

Observation LB+dmb+isb Sometimes 178 1999822

Observation LB+dmbs Never 0 2000000

What is observed (Sometimes) or not (Never) is the occurence of the non-SC behaviour of tests. All tests
have the same structure and the observation of the non-SC behaviour can be interpreted as some read not
being “before” the write by the same thread. This situation occurs for plain program order (plain test LB
and po variations) and for the isb fence.

55

Part IV

Automating the testing process

The authors of dont are Jade Alglave and Luc Maranget (INRIA Paris–Rocquencourt).

14 Preamble

Following Part II, we describe our tests via cycles, built from the candidate relaxations they involve. We
consider a candidate relaxation to be relaxed, or non-global, when it corresponds to the weaknesses that can
be observed on a system implementing A. We consider a candidate relaxation to be safe, or global, when it
is guaranteed, e.g. by the documentation, never to be relaxed.

In the following, we consider an architecture A to be a pair (RelaxA, SafeA), where RelaxA (resp. SafeA)
are the candidate relaxations relaxed (resp. safe) for A. The automated front-end dont mechanises the
task of checking that a machine or executable model conforms to such an architecture, and of exploring
architectures. We provide some experiment reports elsewhere6. This document is intended to be a gentle
introduction to dont and a partial reference.

15 A tour of dont

15.1 Checking conformance

We want to check that a given machine M is conform to an architecture A. By conform, we mean that the
machine M does not exhibit more behaviours than the architecture A actually allows.

For example, let us consider an x86 machine with 2 processors. Suppose that we have been told that x86
machines are TSO [5], and that we want to check that. As the default values of dont options handle that
very situation, we type:

$ dont -mode conform

** Step 0 **

Phase 2 in A (6 tests)

...

Phase 2 in A (6 tests)

** Step 5 **

Safe set {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWR} is conform

The automated front-end dont, assumed the TSO safe set (the default for x86), called the diy tool (see
Part II) to generate all the tests that are forbidden by TSO — up to 2 processors; ran them (5 times) with
our companion litmus tool, (see Part I) against our x86 machine; and observed that the machine does not
exhibit any outcome forbidden by TSO. In effect, dont in conformance check mode automates the safe tests
of Sec. 5.2.

15.2 Checking non-conformance

Now, we wish to prove that an x86 machine is not sequentially consistent. To that end, we write the following
configuration file x86.sc:

#General behaviour

arch = X86

mode = conform

6http://diy.inria.fr/dont/dont/index.html

56

stabilise = 1

#Cycle control

safe = Rfe,Fre,Wse,Pod**,[Rfi,PodRR]

nprocs = 2

#External tool control

litmus_opts = -a 2 -i 0

run_opts = -s 100000 -r 10,-s 5000 -r 200 -i 1

build = make -j 2 -s

Most of dont controls are set, sometimes to their default values:

• arch = X86 sets the targeted architecture, mode = conform sets conformance check mode, and stablise
= 1 commands performing the check round once (the default is five times, cf. supra).

• safe = Rfe,Fre,Wse,Pod**,[Rfi,PodRR] defines the set of safe relaxation candidates used to gener-
ate litmus tests (up to 2 processors, by nprocs = 2).

• The front-end dont calls litmus and runs the tests with the specified options. The setting litmus opt

= -a 2 -i 0 specifies that two processors are available and enables affinity control (see Sec. 3 for the
description of litmus options). Tests will be run twice per check round, once with options -s 100000 -r

10, and once with options -s 5000 -r 200 -i 1 (see Sec. 2.3 for the description of test executable
options). Finally, the setting build = make -j 2 -s specifies the command to use to compile the
C source files that litmus produces.

We run dont configured by x86.sc as follows:

$ dont x86.sc

** Step 0 **

Phase 2 in A (9 tests)

...

** Step 1 **

Safe set {[Rfi,PodRR], Rfe, Fre, Wse, PodWW, PodWR, PodRW, PodRR} is not conform

++ Invalidating tests ++

A006: ’Fre PodWR Fre PodWR’ {Fre, PodWR}

A007: ’Fre PodWW Wse PodWR’ {Fre, Wse, PodWW, PodWR}

A001: ’Rfi PodRR Fre PodWR Fre’ {[Rfi,PodRR], Fre, PodWR}

A002: ’Rfi PodRR Fre PodWW Wse’ {[Rfi,PodRR], Fre, Wse, PodWW}

A000: ’Rfi PodRR Fre Rfi PodRR Fre’ {[Rfi,PodRR], Fre}

++++++++

The conformance check failed and the tests that invalidate the hypothesis “x86 is sequentially consistent”
are listed. The check took place in directory A. Directory A contains the actual logs of litmus runs as files
A.00, A.01 etc., in addition to the sources of the litmus tests:

$cat A/A006.litmus

X86 A006

"Fre PodWR Fre PodWR"

Cycle=Fre PodWR Fre PodWR

Relax=

Safe=Fre PodWR

{ }

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EAX,[x] ;

exists (0:EAX=0 /\ 1:EAX=0)

57

Notice that, since tests are described by their cycles, the source of tests can also be reconstructed with diyone:

% diyone -arch X86 Fre PodWR Fre PodWR

X86 a

"Fre PodWR Fre PodWR"

{ }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

15.3 Automatically exploring the memory model exhibited by a machine

Now suppose that we have no idea of the memory model of our 2 processors x86 machine. Another mode of our
dont tool automatically explores a given machine, and outputs an architecture (i .e. a pair (RelaxA, SafeA))
to which the machine conforms. The following configuration file x86.explo instructs dont to perform such
an exploration.

#General behaviour

arch = X86

mode = explo

#Cycle control

testing = Rfe,Pod**,MFenced**,[Rfi,PodR*]

safe = Fre,Wse

nprocs = 2

#External tool control

litmus_opts = -a 2 -i 0

run_opts = -s 100000 -r 10,-s 5000 -r 200 -i 1

build = make -j 2 -s

With respect to conformance check, new or changed settings are the selection of exploration mode by mode

= explo, the definition of the initial safe set by safe = Fre,Wse, and and the definition of the candidate
relaxations to be tested (testing = Rfe,Pod**,MFenced**,[Rfi,PodR*]).

We launch the exploration as:

$ dont x86.explo

The whole process only takes a few minutes, mostly due to the limited number of tests induced by the setting
nprocs = 2.

We now detail dont output (the html version7 of this document includes the complete log of the experi-
ence). We start by a first exploration round:

** Step 0 **

Testing: {[Rfi,PodRW], [Rfi,PodRR], Rfe, PodWW, PodWR, PodRW, PodRR, MFencedWW,

MFencedWR, MFencedRW, MFencedRR}

Relaxed: {}

Safe : {Fre, Wse}

Phase 1 in A (6 tests)

Actually tested: {[Rfi,PodRW], [Rfi,PodRR], PodWW, PodWR, MFencedWW, MFencedWR}

Added relax: {[Rfi,PodRR], PodWR}

Added safe: {[Rfi,PodRW], PodWW, MFencedWW, MFencedWR}

Phase 2 in B (6 tests)

7http://diy.inria.fr/doc/auto.html

58

The log above first indicates the current status of exploration as three sets: testing, relaxed and safe. Initially,
no candidate relaxation has yet been observed to be relaxed, while the testing and safe sets are as assumed.
Each exploration round is divided in two phases. The aim of Phase 1 (performed in directory A) is to classify
some candidate relaxations as either relaxed or safe. It here succeeds for 6 candidate relaxations, whose
observed status is indicated. Phase 2 (performed in directory B) basically is a conformance check of the
current safe set. The conformance check succeeds and all safe candidate relaxations found at phase 1 make
it to the next round:

** Step 1 **

Testing: {Rfe, PodRW, PodRR, MFencedRW, MFencedRR}

Relaxed: {[Rfi,PodRR], PodWR}

Safe : {[Rfi,PodRW], Fre, Wse, PodWW, MFencedWW, MFencedWR}

Phase 1 in C (10 tests)

Actually tested: {Rfe, PodRW, PodRR, MFencedRW, MFencedRR}

Added safe: {Rfe, PodRW, PodRR, MFencedRW, MFencedRR}

Phase 2 in D (17 tests)

Phase 1 (performed in directory C) can now target new candidate relaxations, because of the increased safe
set. All of targeted candidate relaxations are observed to be safe, which is confirmed by phase 2. As a
consequence, there does not remain any candidate relaxation to be tested and the next round reduces to a
conformance check:

** Step 2 **

Testing: {}

Relaxed: {[Rfi,PodRR], PodWR}

Safe : {[Rfi,PodRW], Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}

Phase 1 in E (0 tests)

Phase 2 in D (17 tests)

The same check is performed for 4 additional rounds as governed by the default value of 5 for the setting
of stabilise. Round number 6 then shows the result of exploration, (i.e. the pair (RelaxA, SafeA)), prefixed
by the list of tests that justify observed relaxations:

** Step 6 **

...

++ Witness(es) for relaxed [Rfi,PodRR] ++

A001: ’Rfi PodRR Fre Rfi PodRR Fre’ {[Rfi,PodRR], Fre}

++++++++

++ Witness(es) for relaxed PodWR ++

A003: ’Fre PodWR Fre PodWR’ {Fre, PodWR}

++++++++

Observed relaxed: {Rfi, PodWR}

Observed safe: {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}

And we go again for 5 additional rounds of pure conformance check:

** Now checking safe set conformance **

** Step 7 **

Phase 2 in F (17 tests)

...

* Step 12 **

Observed relaxed: {Rfi, PodWR}

Observed safe: {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}

59

Once exploration is complete, all litmus tests and logs of litmus runs are still present in their directories
A, B, etc. For instance, the directory F contain the 10 logs of the final conformance check, as the files F.01,
. . . , F.09:

$ ls F/F.??

F/F.00 F/F.01 F/F.02 F/F.03 F/F.04 F/F.05 F/F.06 F/F.07 F/F.08 F/F.09

The tool dont offers a convenient replay feature:

$ dont -restart

** Step 0 *

...

* Step 12 **

Observed relaxed: {Rfi, PodWR}

Observed safe: {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}

The command above takes a few seconds of time, since experiments are not run again. Instead, the logs of
litmus runs are read and their interpretation is re-performed. Notice that the restart feature also permits to
pursue interrupted experiments.

16 Usage of dont

In effect, the tool dont automates the complete testing procedure described in the documentation of diy
proper (Sec. 5). It is to be noticed that dont requires a fully functional installation of the diy tool suite. In
particular, the commands diy and litmus must be installed and runnable as “diy” and “litmus” (i.e. installed
in path).

16.1 Command-line options

The automated front-end dont is configured mostly by the means of a configuration file, which dont takes as
a command-line argument. Nevertheless, dont accepts the following, limited, set of options:

-v Be verbose, repeat to increase verbosity.

-version Show version number and exit.

-arch (X86|PPC|ARM) Set architecture. Default is X86. ARM is untested.

-mode (conform|explo) Set main mode, either conformance check or exploration. Default is explo.

-nprocs <n> Generate tests up to ¡n¿ processors (defaults: X86=2, PPC=4)

-restart Restart the experiment in hand in current directory.

Except for -restart command lines options are not intended for normal use. In particular, command-line
options do not override values defined in configuration files.

Namely, there are many parameters to set and appropriate values for them will depend on the tested ma-
chine. In particular, litmus parameters need to be chosen carefully, by the means of preliminary experiments.
For instructions on configuring litmus, refer to Sec. 2 of litmus documentation.

16.2 Configuration files

The general syntax of configurations files is a sequence of lines key = value. Comment lines are introduced
by #. The tool dont recognises the following keys:

60

General behaviour

mode = (conform|explo) Main operating mode. Default is explo

arch = (X86|PPC|ARM) Target architecture. Default is X86.

run = (local|ssh <addr>|cross <addr1> <addr2>) Give access to the tested machine, which can be
either the machine where dont runs, or remote machine <addr>, or compile C files on remote machine
addr1 and execute on tests on remote machine addr2. Machine addresses are [user@]machine[:port]
expressing connection elements for both ssh and scp. Default is local.

work dir = dir Directory for temporary files, default is /var/tmp.

stabilise = <n > In conformance check mode, dont performs n rounds of conformance testing. In explo-
ration mode, dont ends the exploration after n rounds without state change. Default is 5.

interactive = <bool> In exploration mode and after n rounds without state change, dont will either
assume that the whole current testing set is safe (false), or ask the user (true) to decide for some of
the elements of this set to be safe. Default is true, i.e. ask user.

Generation of cycles

nprocs = <n > Generate cycles up to n processors. Default is 2 for x86 and 4 for Power.

diy sz = <m > Upper limit on the size of cycles of candidate relaxations. Default is 2 × n, where n is the
number of processors. With decent values of the initial candidate relaxations sets (see below), this
default commands the generation of all (critical, see Sec. 9.5) cycles that involve up to n processors.

safe = <relax-list> Define the safe set S. In exploration mode, S is the initial value of the safe set
(default Fre, Wse). In conformance mode, S is the safe set checked. Ddefault is Rfe, Fre, Wse,

PodR*, PodWW, MFencedWR for x86, and unspecified for other architectures.

testing = <relax-list> Define the tested set of candidate relaxations. The tested set is relevant only in
exploration mode. Default values are Rfe,Pod**,MFenced**,[Rfi,MFencedR*],[Rfi,PodR*] for x86
and unspecified for other architectures.

The syntax for relax-list above is a comma (or space) separated list of candidate relaxations. Candidate
relaxations are introduced by the documentation of diy (see Part II)

Control of external tools

litmus opts = <opts> Define options used by dont when it calls litmus. Default is the empty string, i.e.
use litmus defaults.

run opts = <opts1,...,optsn> Define options used for running litmus tests. Any set of litmus tests gen-
erated and compiled by dont, will be run n times, with specified options. More concretely, dont will run
the litmus tests with commands sh run.sh opts1, . . . , sh run.sh optsn. The default is the empty
string, i.e. run tests once with no option.

build = <command> Defines the command issued by dont to compile the C source files produced by lit-
mus. The default is sh comp.sh, i.e. runs the compilation script produced by litmus. An interesting
alternative is gmake -s -j n for concurrent compilation, with up to n concurrent tasks.

61

References

[1] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in Weak Memory Models. In CAV, 2010.

[2] Intel 64 Architecture Memory Ordering White Paper, August 2007.

[3] L. Lamport. How to make a correct multiprocess program execute correctly on a multiprocessor. IEEE
Trans. Comput., 46(7):779–782, 1979.

[4] Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs that share memory.
ACM Trans. Program. Lang. Syst., 10(2):282–312, 1988.

[5] Sparc Architecture Manual Versions 8 and 9, 1992 and 1994.

62

