
A diy tutorial

Version 1.0

January 17, 2010

diy is a tool suite for testing shared memory models. We provide two tools, litmus (Part I) for running
tests, and diy proper (Part II) for producing tests from concise specifications. The software is written in
Objective Caml1, and released as sources. The web site of diy is http://diy.inria.fr/, authors can be
contacted at diy-devel@inria.fr

This software is released under the terms of the Lesser GNU Public License.

Contents

I Running tests with litmus 3

1 A tour of litmus 3

1.1 A simple run . 3
1.2 Cross compilation . 4
1.3 Running several tests at once . 5

2 Controlling test parameters 6

2.1 Architecture of tests . 6
2.2 Controlling executable files . 7
2.3 Controlling litmus . 7

II Generating tests 10

3 Preamble 10

3.1 Relaxation of Sequential Consistency . 10
3.2 Introduction to relaxations . 11
3.3 More relaxations . 12
3.4 Summary of simple relaxations . 15

3.4.1 Communication relaxations . 15
3.4.2 Program order relaxations . 15
3.4.3 Barrier relaxations . 16

4 Testing relaxations with diy 16

4.1 Principle . 16
4.2 Testing x86 . 17

5 Additional relaxations 18

5.1 Intra-processor dependencies . 18
5.2 Composite relaxations and cumulativity . 19

1http://caml.inria.fr/ocaml/

1

6 Command usage 20

6.1 Usage of diyone . 20
6.2 Usage of diy . 20
6.3 Usage of readRelax . 21

2

Part I

Running tests with litmus

Traditionally, a litmus test is a small parallel program designed to exercise the memory model of a parallel,
shared-memory, computer. Given a litmus test in assembler (X86 or Power) litmus runs the test.

Using litmus thus requires a parallel machine, which must additionally feature gcc and the pthreads

library. At the moment, litmus is a prototype and has numerous limitations (recognised instructions, limited
porting). Nevertheless, litmus should accept all tests produced by the companion diy tool and has been
successfully used on Linux, Mac OS, and on two versions of AIX.

The authors of litmus are Luc Maranget and Susmit Sarkar. The present litmus is inspired from a proto-
type by Thomas Braibant (INRIA Rhône-Alpes) and Francesco Zappa Nardelli (INRIA Paris-Rocquencourt).

1 A tour of litmus

1.1 A simple run

Consider the following (rather classical) classic.litmus litmus test for X86:

X86 classic

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

A litmus test source has three main sections:

1. The initial state defines the initial values of registers and memory locations. Initialisation to zero may
be omitted.

2. The code section defines the code to be run concurrently — above there are two threads. Yes we know,
our X86 assembler syntax is a mistake.

3. The final condition applies to the final values of registers and memory locations.

Run the test by:

$ litmus classic.litmus

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for classic.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X86 classic

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

Generated assembler

3

_litmus_P0_0_: movl $1,(%rcx)

_litmus_P0_1_: movl (%rsi),%eax

_litmus_P1_0_: movl $1,(%rsi)

_litmus_P1_0_: movl $1,(%rsi)

_litmus_P1_1_: movl (%rcx),%eax

Test classic Allowed

Histogram (4 states)

34 :>0:EAX=0; 1:EAX=0;

499911:>0:EAX=1; 1:EAX=0;

499805:>0:EAX=0; 1:EAX=1;

250 :>0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 34, Negative: 999966

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=eb447b2ffe44de821f49c40caa8e9757

Time classic 0.60

...

The litmus test is first reminded, followed by actual assembler — the machine is an AMD64, in-line address
references disappeared, registers may change, and assembler syntax is now more familiar. The test has run
one million times, producing one million final states, or outcomes for the registers EAX of threads P0 and P1.
The test run validates the condition, with 34 positive witnesses.

1.2 Cross compilation

With option -o <name.tar>, litmus does not run the test. Instead, it produces a tar archive that contains
the C sources for the test.

Consider ppc-classic.litmus, a Power version of the previous test:

PPC ppc-classic

"Fre PodWR Fre PodWR"

{

0:r2=y; 0:r4=x;

1:r2=x; 1:r4=y;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r4) | lwz r3,0(r4) ;

exists (0:r3=0 /\ 1:r3=0)

Our target machine (ppc) runs Mac OS, wich we specify with the -os option:

$ litmus -o /tmp/a.tar -os mac ppc-classic.litmus

$ scp /tmp/a.tar ppc:/tmp

Then, on the remote machine ppc:

ppc$ mkdir classic && cd classic

ppc$ tar xf /tmp/a.tar

ppc$ ls

comp.sh run.sh ppc-classic.c outs.c utils.c

4

Test is compiled by the shell script comp.sh and run by the shell script run.sh:

$ sh comp.sh

$ sh run.sh

...

Test ppc-classic Allowed

Histogram (3 states)

3947 :>0:r3=0; 1:r3=0;

499357:>0:r3=1; 1:r3=0;

496696:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 3947, Negative: 996053

Condition exists (0:r3=0 /\ 1:r3=0) is validated

...

As we see, the condition validates also on Power.
The compilation script comp.sh produces an executable: ppc-classic.exe. Notice that ppc-classic.exe

can be run directly, for a less verbose output.

1.3 Running several tests at once

Consider the additional test ppc-storefwd.litmus:

PPC ppc-storefwd

"DpdR Fre Rfi DpdR Fre Rfi"

{

0:r2=x; 0:r6=y;

1:r2=y; 1:r6=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) ;

xor r4,r3,r3 | xor r4,r3,r3 ;

lwzx r5,r4,r6 | lwzx r5,r4,r6 ;

exists (0:r3=1 /\ 0:r5=0 /\ 1:r3=1 /\ 1:r5=0)

To compile the two tests together, we can give two file names as arguments to litmus:

$ litmus -o /tmp/a.tar -os mac ppc-classic.litmus ppc-storefwd.litmus

Or, more conveniently, list the litmus sources in a file whose name starts with @:

$ cat @ppc

ppc-classic.litmus

ppc-storefwd.litmus

$ litmus -o /tmp/a.tar -os mac @ppc

To run the test on the remote ppc machine, the same sequence of commands as in the one test case applies:

ppc$ tar xf /tmp/a.tar && sh comp.sh && sh run.sh

...

Test ppc-classic Allowed

5

Histogram (3 states)

4167 :>0:r3=0; 1:r3=0;

499399:>0:r3=1; 1:r3=0;

496434:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 4167, Negative: 995833

Condition exists (0:r3=0 /\ 1:r3=0) is validated

...

Test ppc-storefwd Allowed

Histogram (4 states)

37 :>0:r3=1; 0:r5=0; 1:r3=1; 1:r5=0;

499837:>0:r3=1; 0:r5=1; 1:r3=1; 1:r5=0;

499912:>0:r3=1; 0:r5=0; 1:r3=1; 1:r5=1;

214 :>0:r3=1; 0:r5=1; 1:r3=1; 1:r5=1;

Ok

Witnesses

Positive: 37, Negative: 999963

Condition exists (0:r3=1 /\ 0:r5=0 /\ 1:r3=1 /\ 1:r5=0) is validated

...

Now, the output of run.sh shows the result of two tests.

2 Controlling test parameters

Users can control some of testing conditions. Those impact efficiency and outcome variability.
Sometimes one looks for a particular outcome — for instance, one may seek to get the outcome 0:r3=1; 1:r3=1;

that is missing in the previous experiment for test ppc-classical. To that aim, varying test conditions
may help.

2.1 Architecture of tests

Consider a test a.litmus designed to run on t threads P0,. . . , Pt−1. The structure of the executable a.exe

that performs the experiment is as follows:

• So as to benefit from parallelism, we run n = max(1, a/t) (euclidean division) tests concurrently on a
machine where a cores are available.

• Each of these (identical) tests consists in repeating r times the following sequence:

– Fork t (POSIX) threads T0, . . . Tt−1 for executing P0,. . . , Pt−1. Which thread executes which
code is either fixed, or changing, controlled by the launch mode. In our experience, the launch
mode has marginal impact.

– Each thread Tk executes a loop of size s. Loop iteration number i executes the code of Pk (in
fixed mode) and saves the final contents of its observed registers in some arrays indexed by i.
Furthermore, still for iteration i, memory location x is in fact an array cell.

How this array cell is accessed depends upon the memory mode. In direct mode the array cell is
accessed directly as x[i]; as a result, cells are accessed sequentially and false sharing effects are
likely. In indirect mode the array cell is accessed by the means of a shuffled array of pointers; as
a result we observed a much greater variability of outcomes.

6

If the preload mode is enabled, a preliminary loop of size s reads a random subset of the memory
locations accessed by Pk. Preload have a noticeable effect.

The iterations performed by the different threads Tk may be unsynchronised, exactly synchronised
by a pthread based barrier, or approximately synchronised by specific code. Absence of synchro-
nisation may be interesting when t exceeds a. As a matter of fact, in this situation, any kind
of synchronisation leads to prohibitive running times. However, for a large value of parameter s
and small t we have observed spontaneous concurrent execution of some iterations amongst many.
Pthread based barriers are exact but they are slow and in fact offers poor synchronisation for
short code sequences. The approximate synchronisation is thus the preferred technique.

– Wait for the t threads to terminate and collect outcomes in some histogram like structure.

• Wait for the n tests to terminate and sum their histograms.

Hence, running a.exe produces n × r × s outcomes. Parameters n, a, r and s can first be set di-
rectly while invoking a.exe, using the appropriate command line options. For instance, assuming t = 2,
./a.exe -a 201 -r 10000 -s 1 and ./a.exe -n 1 -r 1 -s 1000000 will both produce one million out-
comes, but the latter is probably more efficient. If our machine has 8 cores, ./a.exe -a 8 -r 1 -s 1000000

will yield 4 millions outcomes, in a time that we hope not to exceed too much the one experienced
with ./a.exe -n 1. Also observe that the memory allocated is roughly proportional to n × s, while the
number of Tk threads created will be t × n × r. The run.sh shell script transmits its command line to all
the executable (.exe) files it invokes, thereby providing a convenient means to control testing condition for
several tests. Satisfactory test parameters are found by experimenting and the control of executable files by
command line options is designed for that purpose.

Once satisfactory parameters are found, it is a nuisance to repeat them for every experiment. Thus,
parameters a, r and s can also be set while invoking litmus, with the same command line options. In fact
those settings command the default values of .exe files controls. Additionally, the synchronisation technique
for iterations, the memory mode, and several others compile time parameters can be selected by appropriate
litmus command line options. Finally, users can record frequently used parameters in configuration files.

2.2 Controlling executable files

Any executable file produced by litmus accepts the following command line options.

-v Be verbose, can be repeated to increase verbosity.

-q Be quiet.

-a <n> Run maximal number of tests concurrently for n available cores — parameter a in Section 2.1.

-n <n> Run n tests concurrently — parameter n in Section 2.1.

-r <n> Perform n runs — parameter r in Section 2.1.

-fr <f> Multiply r by f (f is a floating point number).

-s <n> Size of a run — parameter s in Section 2.1.

-fs <f> Multiply s by f .

-f <f> Multiply s by f and divide r by f .

2.3 Controlling litmus

Arguments

litmus takes file names as command line arguments. Those files are either a single litmus test, when having
extension .litmus, or a list of file names, when prefixed by @. Of course, the file names in @files can
themselves be @files.

7

Options

There are many command line options. We describe the more useful ones:

General behaviour

-version Show version number and exit.

-libdir Show installation directory and exit.

-v Be verbose, can be repeated to increase verbosity.

-mach <name> Read configuration file name.cfg. See the next section for the syntax of configuration files.

-o <name.tar> Cross compile tests into tar file name.tar.

Test conditions The following options set the default values of the options of the executable files produced:

-a <n> Run maximal number of tests concurrently for n available cores — set default value for -a of
Section 2.2. Default is 0 (run one test).

-limit <bool> Do not process tests with more than n threads, where n is the number of available cores
defined above. Default is false.

-r <n> Perform n runs — set default value for option -r of Section 2.2. Default is 10.

-s <n> Size of a run — set default value for option -s of Section 2.2. Default is 100000.

The following additional options control the various modes described in Section 2.1. Those cannot be
changed without running litmus again:

-barrier (user|pthread|none) Set synchronisation mode, default user.

-launch (changing|fixed) Set launch mode, default changing.

-mem (indirect|direct) Set memory mode, default indirect.

-preload <bool> Enable or disable preload, default enabled.

-safer <bool> Enable or disable safer mode, default enabled. In safer mode, executable files performs
some consistency checks. Those are intended both for debugging and for dynamically checking some
assumption on POSIX threads that we rely upon.

-para (self|shell) Perform several tests concurrently, either by forking POSIX threads (as described in
Section 2.1), or by forking Unix processes. Only applies for cross compilation. Default is self.

-speedcheck <bool> Enable or disable quick condition check mode, default enabled. When enabled, stop
test as soon as condition is settled.

-ccopts <flags> Set additional gcc compilation flags (defaults: X86="-fomit-frame-pointer -O2", PPC="-O").

Target architecture description Litmus compilation chain may slightly vary depending on the following
parameters:

-os (linux|mac|aix|aix5) Set target operating system. This parameter mostly impacts some of gcc

options. Default linux.

-ws (w32|w64) Set word size. This option only applies to Power, selecting gcc 32 or 64 bits mode. It
also slightly impacts code generation in the corner case where memory locations hold other memory
locations. Default w32.

8

Configuration files

The syntax of configuration files is minimal: lines “key = arg” are interpreted as setting the value of param-
eter key to arg. Each parameter has a corresponding option, usually -key, except for single-letter options:

option key arg

-a avail integer
-s size of test integer
-r number of run integer

As command line option are processed left-to-right, settings from a configuration file (option -mach) can
be overridden by a later command line option. Some configuration files for the machines we have tested are
present in the distribution. As an example here is the configuration file hpcx.cfg.

size_of_test = 2000

number_of_run = 20000

os = AIX

ws = W32

A node has 16 cores X2 (SMT)

avail = 32

Lines introduced by # are comments and are thus ignored.
Configuration files are searched first in the current directory; then in any directory specified by setting

the shell environment variable LITMUSDIR; and then in litmus installation directory, which is defined while
compiling litmus.

9

Part II

Generating tests

The authors of diy are Jade Alglave and Luc Maranget (INRIA Paris–Rocquencourt).

3 Preamble

We wrote diy as part of our empirical approach to studying relaxed memory models: developping in tan-
dem testing tools and models of multiprocessor behaviour. In this tutorial, we attempt an independant
tool presentation. Readers interested by the companion formalism are invited to refer to our publications
(submission. . .).

3.1 Relaxation of Sequential Consistency

Relaxation is one of the key concepts behind simple analysis of weak memory models. We define a relaxation
by reference to the most natural model of parallel execution in shared memory: Sequential Consistency (SC),
as defined by L. Lamport [2]. A parallel program running on a sequentially consistent machine behaves as
an interleaving of its sequential threads.

Consider once more the example classic.litmus:

X86 classic

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ; #(a)Wy1 | (c)Wx1

MOV EAX,[x] | MOV EAX,[y] ; #(b)Rx0 | (d)Ry0

exists (0:EAX=0 /\ 1:EAX=0)

To focus on interaction through shared memory, let us consider memory accesses, or memory events. A
memory event will hold a direction (write, written W, or read, written R), a memory location (written x, y)
a value and a unique label. In any run of the simple example above, four memory events occur: two writes
(c)Wx1 and (a)Wy1 and two reads (b)Rxv1 with a certain value v1 and (d) Ryv2 with a certain value v2.

If the program’s behaviour is modelled by the interleaving of its events, the first event must be a write
of value 1 to location x or y and at least one of the loads must see a 1. Thus, a SC machine would exhibit
only three possible outcomes for this test:

Allowed: 0:EAX = 0 ∧ 1:EAX = 1
Allowed: 0:EAX = 1 ∧ 1:EAX = 0
Allowed: 0:EAX = 1 ∧ 1:EAX = 1

However, running (see Sec. 1.1) this test on a x86 machine yields an additional result:

Allowed: 0:EAX = 0 ∧ 1:EAX = 0

And indeed, x86 allows each write-read pair on both processors to be reordered [1]: thus the write-read
pair in program order is relaxed on each of these architectures. We cannot use SC as an accurate memory
model for modern architectures. Instead we analyse memory models as relaxing the ordering constraints of
the SC memory model.

10

3.2 Introduction to relaxations

Consider again our classical example, from a SC perspective. We briefly argued that the outcome “0:EAX
= 0 ∧ 1:EAX = 0” is forbidden by SC. We now present a more complete reasoning:

• From the condition on outcome, we get the values in read events: (b)Rx0 and (d)Ry0.

• Because of these values, (b)Rx0 must precede the write (c) Wx1 in the final interleaving of SC. Similarly,

(d)Ry0 must precede the write (a) Wy1. This we note (b)
fr
→ (c) and (d)

fr
→ (a).

• Because of sequential execution order on one single processor (a.k.a. program order), (a) Wy1 must
precede (b)Rx0 (first processor); while (c)Wx1 must precede (d) Ry0 (second processor). This we note

(a)
po
→ (b) and (c)

po
→ (d).

• We synthesise the four constraints above as the following graph:

(a) Wy1

(b) Rx0

(c) Wx1

(d) Ry0

po rf

fr

porf

fr

rf

rf

Constraint arrows or global arrows are shown in brown colour. As the graph contains a cycle of brown
arrows, the events cannot be ordered. Hence the execution presented is not allowed by SC.

The key idea of diy resides in producing programs from similar cycles. To that aim, the edges in cycles
must convey additional information:

• For
po
→ edges, we consider whether the locations of the events on both sides of the edge are the same

or not (’s’ or ’d’); and the direction of these events (W or R). For instance the two
po
→ edges in the

example are PodWR. (program order edge between a write and a read whose locations are different).

• For
fr
→ edges, we consider whether the processor of the events on both sides of the edge are the same

or not (’i’ for internal, or ’e’ for external). For instance the two
fr
→ edges in the example are Fre.

So far so good, but our x86 machine produced the outcome 0:EAX=0 ∧ 1:EAX=0. The Intel Memory
Ordering White Paper [1] specifies: “Loads may be reordered with older stores to different locations”, which
we rephrase as: PodWR is relaxed. Considering Fre to be safe, we have the graph:

11

(a)Wy1

(b)Rx0

(c)Wx1

(d)Ry0

PodWR Rf

Fre

PodWRRf

Fre

Rf

Rf

And the brown sub-graph becomes acyclic.
We shall see later why we choose to relax PodWR and not Fre. At the moment, we observe that we can

assume PodWR to be relaxed and Fre not to be (i.e. to be safe) and test our assumptions, by producing
and running more litmus tests. The diy suite precisely provides tools for this approach.

As a first example, classic.litmus can be created as follows:

% diyone -arch X86 -name classic Fre PodWR Fre PodWR

As a second example, we can produce several similar tests as follows:

% diy -arch X86 -safe Fre -relax PodWR -name classic

Generator produced 2 tests

Relaxations tested: {PodWR}

diy produces two litmus tests, classical000.litmus and classical001.litmus, plus one index file @all.
One of the litmus tests generated is the same as above, while the new test is:

% cat classic001.litmus

X86 classic001

"Fre PodWR Fre PodWR Fre PodWR"

Cycle=Fre PodWR Fre PodWR Fre PodWR

Relax=PodWR

Safe=Fre

{ }

P0 | P1 | P2 ;

MOV [z],$1 | MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[x] | MOV EAX,[y] | MOV EAX,[z] ;

exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0)

% cat @all

diy -arch X86 -safe Fre -relax PodWR -name classic

Revision: 3333

classic000.litmus

classic001.litmus

diy first generates cycles from the relaxations given as arguments, up to a limited size, and then generates
litmus tests from these cycles.

3.3 More relaxations

We assume the memory to be coherent. Coherence implies that, in a given execution, the writes to a given
location are performed by following a sequence, or coherence order, and that all processors see the same
sequence.

12

In diy, the coherence orders are specified indirectly. For instance, the relaxation Wse (resp. Wsi) specifies
two writes, performed by different processors (resp. the same processor), to the same location ℓ, the first
write preceding the second in the coherence order of ℓ. The condition of the produced test then selects the
specified coherence orders. Consider for instance:

% diyone -arch X86 -name ws Wse PodWW Wse PodWW

The cycle that reveals a violation of the SC memory model is:

(a) Wy2

(b) Wx1

(c) Wx2

(d) Wy1

PodWWrf

Wse

PodWWrf

Wse

So the coherence order is 0 (initial store, not depicted), 1, 2 for both locations x and y. While the produced
test is:

X86 ws "Wse PodWW Wse PodWW"

{ }

P0 | P1 ;

MOV [y],$2 | MOV [x],$2 ;

MOV [x],$1 | MOV [y],$1 ;

exists (x=2 /\ y=2)

By the coherence hypothesis, checking the final value of locations suffices to check the coherence orders, as
expressed by the final condition of ws.litmus:

exists (x=2 /\ y=2)

Relaxations Rfe and Rfi relate writes to reads that load their value. We are now equipped to generate
the famous iriw test (independent reads of independent writes):

% diyone -arch X86 Rfe PodRR Fre Rfe PodRR Fre -name iriw

We generate its internal variation (i.e. where all Rfe are replaced by Rfi) as easily:

% diyone -arch X86 Rfi PodRR Fre Rfi PodRR Fre -name iriw-internal

We get the cycles of Fig. 1, and the litmus tests of Fig. 2.
Relaxations given as arguments really are a “concise specification”. As an example, we get iriw for Power,

simply by changing -arch X86 into -arch PPC.

% diyone -arch PPC Rfe PodRR Fre Rfe PodRR Fre

PPC a

"Rfe PodRR Fre Rfe PodRR Fre"

{

0:r2=y; 0:r4=x;

13

Figure 1: Cycles for iriw and iriw-internal

(a) Ry1

(b) Rx0

(c) Wx1

(d) Rx1

(e) Ry0

(f) Wy1

PodRR

Fre

Rferf

PodRR

Fre

Rfe

rf

rf

rf

(a) Wx1

(b) Rx1

(c) Ry0

(d) Wy1

(e) Ry1

(f) Rx0

Rfi rf

PodRR

Fre

Rfirf

PodRR

Fre

rf

rf

Figure 2: Litmus tests iriw and iriw-internal

X86 iriw

"Rfe PodRR Fre Rfe PodRR Fre"

{ }

P0 | P1 | P2 | P3 ;

MOV EAX,[y] | MOV [x],$1 | MOV EAX,[x] | MOV [y],$1 ;

MOV EBX,[x] | | MOV EBX,[y] | ;

exists (0:EAX=1 /\ 0:EBX=0 /\ 2:EAX=1 /\ 2:EBX=0)

X86 iriw-internal

"Rfi PodRR Fre Rfi PodRR Fre"

{ }

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

MOV EBX,[y] | MOV EBX,[x] ;

exists

(0:EAX=1 /\ 0:EBX=0 /\

1:EAX=1 /\ 1:EBX=0)

14

1:r2=x;

2:r2=x; 2:r4=y;

3:r2=y;

}

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwz r3,0(r4) | stw r1,0(r2) | lwz r3,0(r4) | stw r1,0(r2) ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0)

Also notice that without the -name option, diyone writes its result to standard output.

3.4 Summary of simple relaxations

We summarise relaxations available on all architectures.

3.4.1 Communication relaxations

We call communication relaxations the relations between two events communicating through memory, though
they could belong to the same processor. Thus, these events operate on the same memory location.

diy relaxation Source Target Processor Additional property
Rfi W R Same Target reads its value from source
Rfe W R Different Target reads its value from source
Wsi W W Same Source precedes target in coherence order
Wse W W Different Source precedes target in coherence order
Fri R W Same Source reads a value from a write that pre-

cedes target in coherence order
Fre R W Different Source reads a value from a write that pre-

cedes target in coherence order

3.4.2 Program order relaxations

We call program order relaxations each relation between two events in the program order. These events are
on the same processor, since they are in program order. As regards code output, diy interprets a program
order relaxation by generating two memory instructions (load or store) following one another.

Program order relaxations have the following syntax:

Po(s|d)(R|W)(R|W)

where:

• s (resp. d) indicates that the two events are to the same (resp. different) location(s);

• R (resp. W) indicates an event to be a read (resp. a write);

In practice, we have:

diy relaxation Source Target Location
PosRR R R Same
PodRR R R Diff
PosRW R W Same
PodRW R W Diff
PosWW W W Same
PodWW W W Diff
PosWR W R Same
PodWR W R Diff

15

It is to be noticed that PosWR, PosWW and PosRW are similar to Rfi, Wsi and Fri, respectively. More
precisely, diy is unable to consider a PosWR (or PosWW, or PosRW) relaxation as not being also a Rfi (or
Wsi, or Fri) relaxation. However, litmus tests conditions may be more informative in the case of Rfi and Fri.

3.4.3 Barrier relaxations

Relaxed architectures provide specific instructions, namely barriers or fences, to enforce order of memory
accesses. In diy the presence of a fence instruction is specified with Fenced relaxations, similar to Po
relaxations, except that a fence instruction is inserted. Hence we have FencedsRR, FenceddRR. etc. The
inserted fence is the stronger fence provided by the architecture — that is, mfence for x86 and sync for Power.

Barriers can also be specified by using specific names. More precisely, we have MFence for x86; while
on Power we have Sync and LwSync. Hence, to yield two reads to different locations and separated by the
lightweight Power barrier lwsync, we specify LwSyncdRR.

4 Testing relaxations with diy

diy can probably be used in various, creative, ways; but the tool first stems from our technique for testing
relaxed memory models. The -safe and -relax options are crucial here. We describe our technique by the
means of an example: X86-TSO.

4.1 Principle

Before engaging in testing it is important to categorise relaxations as safe or relaxed.
This can done by interpretation of vendor’s documentation. For instance, the iriw test of Sec. 3.3 is the

example 7.7 of [1] “Stores Are Seen in a Consistent Order by Other Processors”, with a Forbid specification.
Hence we deduce that Fre, Rfe and PodRR are safe. Then, from test iriw-internal of Sec. 3.3, which is Intel’s
test 7.5 “Intra-Processor Forwarding Is Allowed” with an allow specification, we deduce that Rfi is relaxed.
Namely, the cycle of iriw-internal is “Fre Rfi PodRR Fre Rfi PodRR”. Therefore, the only possibility is for
Rfi to be relaxed.

Overall, we deduce:

• Relaxations PosWR (Rfi) and PodWR are relaxed

• The remaining relaxations PosRR, PowRR, PosWW (Wsi), PodWW, PosRW (Fri), Fre and Wse are
safe. Barrier relaxations FencedsWR and FenceddWR are also safe and worth testing.

Of course these remain assumptions to be tested. To do so, we perform one series of tests per relaxed
relaxation, and one series of tests for confirming safe relaxations as much as possible. Let S be all safe
relaxations.

• Let r be a relaxed relaxation. We produce tests for confirming r being relaxed by diy -relax r -safe S.
We run these tests with litmus. If one of the tests yields Ok, then r is confirmed to be relaxed (provided
the experiments on S below do not fail. . .)

• For confirming the safe set, we produce tests by diy -safe S. We run these tests as much as possible
and expect never to see Ok.

Namely, diy builds cycles as follows:

• diy -relax r -safe S build cycles with at least one r taking other relaxations from S.

• diy -safe S build cycles from the relaxations in S.

For the purpose of confirming relaxed relaxations, S can be replaced by a subset.

16

4.2 Testing x86

Repeating command line options is painful and error prone. Besides, configuration parameters may get lost.
Thus, we regroup those in configuration files that simply list the options to be passed to diy, one option per
line. For instance here is the configuration file for testing the safe relaxations of x86, x86-safe.conf.

#safe x86 conf file

-arch X86

#Generate tests on four processors or less

-nprocs 4

#From cycles of size at most six

-size 6

#With names safe000, safe0001,...

-name safe

#List of safe relaxations

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FencedsWR FenceddWR

Observe that the syntax of relaxations allows one shortcut: the wildcard * stands for W and R. Thus PodR*
gets expanded to PodRR PodRW.

We get safe tests by issuing the following command, preferably in a specific directory, say safe.

% diy -conf x86-safe.conf

Generator produced 38 tests

Relaxations tested: {}

Here are the configuration files for confirming that Rfi and PodWR are relaxed, x86-rfi.conf and x86-podwr.conf.

#rfi x86 conf file

-arch X86

-nprocs 4

-size 6

-name rfi

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FencedsWR FenceddWR

-relax Rfi

#podrw x86 conf file

-arch X86

-nprocs 4

-size 6

-name podwr

-safe Fre

-relax PodWR

Notice that we used the complete safe relaxation list in x86-rfi.conf and a reduced list in x86-podwr.conf.
Tests are to be generated in specific directories.

% cd rfi

% diy -conf x86-rfi.conf

Generator produced 11 tests

Relaxations tested: {Rfi}

% cd ../podwr

% diy -conf x86-podwr.conf

Generator produced 2 tests

Relaxations tested: {PodWR}

% cd ..

Now, let us run all tests at once, with the parameters of machine saumur (4 physical cores with hyper-
threading):

% litmus -mach saumur rfi/@all > rfi/saumur.rfi.00

% litmus -mach saumur podwr/@all > podwr/saumur.podwr.00

% litmus -mach saumur safe/@all > safe/saumur.safe.00

17

If your machine has 2 cores only, try litmus -a 2 -limit true. . .
We now look for the tests that have validated their condition in the result files of litmus. A simple tool,

readRelax, does the job:

% readRelax -arch X86 rfi/saumur.rfi.00 podwr/saumur.podwr.00 safe/saumur.safe.00

.

.

.

** Relaxation summary **

{Rfi} With {Rfe, Fre, Wse, PodRW, PodRR} {Rfe, Fre, PodRR}\

{Fre, Wse, PodWW, PodRR} {Fre, PosWW, PodRR, MFencedWR}\

{Fre, PodWW, PodRR, MFencedWR} {Fre, PodRR} {Fre, PodRR, MFencedWR}

{PodWR} With {Fre}

The tool readRelax first lists the result of all tests (which is omitted above), and then dumps a summary
of the relaxations it found. The sets of the relaxations that need to be safe for the tests to indeed reveal a
relaxed relaxation are also given. Here, Rfi and PodWR are confirmed to be relaxed, while no relaxation in
the safe set is found to be relaxed. Had it been the case, a line {} With {...} would have occurred in the
relaxation summary. The safe tests need to be run a lot of times, to increase our confidence in the safe set.

5 Additional relaxations

We introduce some additional relaxations that are specific to the Power architecture. We shall not detail
here our experiments on Power machines. See our experience report http://diy.inria.fr/phat/ for more
details.

5.1 Intra-processor dependencies

In a very relaxed architecture such as Power, intra-processor dependencies becomes significant. Roughly,
intra-processor dependencies fall into two categories:

Data dependencies occur when a memory access instruction reads a register whose contents depends upon
a previous (in program order) load. In diy we specify such a dependency as:

Dp(s|d)(R|W)

where, as usual, s (resp. d) indicates that the source and target events are to the same (resp. different)
location(s); and R (resp. W) indicates that the target event is a read (resp. a write). As a matter of
fact, we do not need to specify the direction of the source event, since it always is a read.

Control dependencies occur when the execution of a memory access is conditioned by the contents of a
previous load. Their syntax is similar to the one of Dp relaxations, with a Ctrl tag:

Ctrl(s|d)(R|W)

In the produced code, diy expresses a data dependency by a false dependency (or dummy dependency) that
operates on the address of the target memory access. For instance:

% diyone DpdW Rfe DpdW Rfe

PPC a "DpdW Rfe DpdW Rfe"

{ 0:r2=x; 0:r5=y; 1:r2=y; 1:r5=x; }

P0 | P1 ;

lwz r1,0(r2) | lwz r1,0(r2) ;

18

xor r3,r1,r1 | xor r3,r1,r1 ;

li r4,1 | li r4,1 ;

stwx r4,r3,r5 | stwx r4,r3,r5 ;

exists (0:r1=1 /\ 1:r1=1)

On P0, the effective address of the indexed store stwx r4,r3,r5 depends on the contents of the index
register r3, which itself depends on the contents of r1. The dependency is a “false” one, since the contents
of r3 always is zero, regardless of the contents of r1.

A control dependency is implemented by the means of an useless compare and branch sequence, plus the
isync instruction when the target event is a load. For instance

% diyone CtrldR Fre SyncdWW Rfe

PPC a

"CtrldR Fre SyncdWW Rfe"

{ 0:r2=x; 0:r4=y; 1:r2=y; 1:r4=x; }

P0 | P1 ;

li r1,1 | lwz r1,0(r2) ;

stw r1,0(r2) | cmpw r1,r1 ;

sync | beq LC00 ;

li r3,1 | LC00: ;

stw r3,0(r4) | isync ;

| lwz r3,0(r4) ;

exists (1:r1=1 /\ 1:r3=0)

Of course, in both cases, we assume that dependencies are not “optimised out” by the assembler or the
hardware.

5.2 Composite relaxations and cumulativity

Users may specify a small sequence of single relaxations as behaving as a single relaxation to diy. The syn-
tax is:

[r1, r2, . . .]

The main usage of the feature is to specify cumulativity relaxations, that is, the sequence of Rfe and of a
barrier relaxation (A-cumulativity), or the sequence of a barrier relaxation and of Rfe (B-cumulativity). Cu-
mulativity relaxations are best expressed by the following syntactical shortcuts: let r be a barrier relaxation,
then ACr stands for [Rfe,r], while BCr stands for [r,Rfe].

Hence, a simple way to generate iriw-like (see Sec. 3.3) litmus tests with lwsync is as follows:

% diy -name iriw-lwsync -nprocs 8 -size 8 -relax ACLwSyncdRR -safe Fre

Generator produced 3 tests

Relaxations tested: {ACLwSyncdRR}

where we have for instance:

% cat iriw-lwsync001.litmus

PPC iriw-lwsync001

"Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR"

Cycle=Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR

Relax=ACLwSyncdRR

Safe=Fre

{

0:r2=z; 0:r4=x; 1:r2=x;

2:r2=x; 2:r4=y; 3:r2=y;

19

4:r2=y; 4:r4=z; 5:r2=z;

}

P0 | P1 | P2 | P3 | P4 | P5 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwsync | stw r1,0(r2) | lwsync | stw r1,0(r2) | lwsync | stw r1,0(r2) ;

lwz r3,0(r4) | | lwz r3,0(r4) | | lwz r3,0(r4) | ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0 /\ 4:r1=1 /\ 4:r3=0)

6 Command usage

The diy suite consists in three tools:

diyone generates one litmus test from the specification of a violation of the sequential consistency memory
model as a cycle—see Sec. 3.2.

diy generates several tests, aimed confirming that relaxations are relaxed or safe—see Sec. 4.

readRelax Extract relevant information from the results of tests—see Sec. 4.2.

6.1 Usage of diyone

diyone takes a list of relaxations as arguments and outputs a litmus test. Note that diyone may fail to produce
the test, with a message that briefly details the failure.

% diyone Rfe Rfe PodRR

Test a [Rfe Rfe PodRR] failed:

Impossible direction PodRR Rfe

diyone accepts the following documented options.

-v Be verbose, repeat to increase verbosity.

-version Show version number and exit.

-obs Enable observers. Observers are additional threads that check the coherence order of locations that are
written into three times or more. Without observers, diyone fails if three writes to the same location
are specified.

-optcond Optimise conditions by disregarding the values of loads that are neither the target of Rf, nor the
source of Fr. This is the default.

-nooptcond Do not optimise conditions.

-name <name> Set the name of the test to <name> and output it into file <name>.litmus. By default, the
test name is a and output goes to standard output.

-arch (X86|PPC) Set architecture. Default is PPC.

6.2 Usage of diy

The tool diy accepts the same options as diyone, option -name <name> being mandatory and setting the
base name of generated litmus tests: i.e. diy produces tests <name>000, <name>001, etc., in files with
extension .litmus. Moreover, diy produces an index file @all that lists file names <name>000.litmus,
<name>001.litmus etc.

diy also accepts the following, additional, documented options.

20

-conf <file> Read configuration file <file>. A configuration file consists in a list of options, one option
per line. Lines introduced by # are comments and are thus ignored.

-o <name.tar> Output litmus tests as an archive <name.tar>. The default is to output them in the current
directory.

-size <n> Set the maximal size of cycles. Default is 6.

-exact Produce cycles of size exactly <n>, in place of size up to <n>.

-nprocs <n> Reject tests with more than <n> threads. Default is 4.

-c <bool> Avoid equivalent cycles. Default is true.

-relax <relax-list> Set relax list. Default is empty. The syntax of <relax-list> is a comma (of space)
separated list of relaxations.

-safe <relax-list> Set safe list. Default is empty.

The relax and safe lists command the internal generation of cycles as follows:

1. When the relax list is empty, cycles are built from the relaxations of the safe list.

2. When the relax list is of size 1, cycles are built from its single element r and from the elements of the
safe list. Additionally, the cycle produced contains r at least once.

3. When the relax list is of size n, with n > 1, diy generates n independent sets of cycles, each set being
built with one relaxation from the relax list and all the relaxations in the safe list. In other words, diy

on a relax list of size n behaves similarly to n runs of diy on each relaxation in the list.

6.3 Usage of readRelax

readRelax is a simple tool to extract relevant information out of litmus run logs. For a given run of a given
litmus test, the relevant information is:

• Whether the test yielded Ok or not,

• An optional relaxation, which is the one given as argument to diy option -relax at test build time, or
none.

• The safe list relevant to the given test, i.e. the safe relaxations that appear in the tested cycle.

See Sec. 4.2 for an example.
The tool readRelax takes file names as arguments. If no argument is present, it reads a list of file names

on standard input, one name per line. Only the -arch option is accepted, with default PPC. This is to be
noticed, since forgetting the option -arch X86 for reading x86 logs will make readRelax fail.

References

[1] Intel 64 Architecture Memory Ordering White Paper, August 2007.

[2] L. Lamport. How to make a correct multiprocess program execute correctly on a multiprocessor. IEEE

Trans. Comput., 46(7):779–782, 1979.

21

