
A diy �Seven� tutorial

Version 7.05

Mar
h 9, 2016

diy7 is a tool suite for testing shared memory models. We provide several tools, litmus7 (Part I) for

running tests, diy7 generators (Part II) for produ
ing tests from
on
ise spe
i�
ations, and herd7 (Part III)

for simulating memory models. In Part IV we des
ribe a few
on
rete experiments, illustrating frequent

usage patterns of diy7 generators and of litmus7.

The software is written in Obje
tive Caml

1

, and released as sour
es. The web site of diy7 is http:

//diy.inria.fr/, authors
an be
onta
ted at diy-devel�inria.fr. This software is released under the

terms of the CeCILL-B Free Software Li
ense Agreement.

The authors of the diy7 tool suite are Jade Alglave and Lu
 Maranget, with
ontributions by Ja
ques-

Pas
al Deplaix (litmus7 for C) and Keryan Didier (herd7 semanti
s for ARMv8 and simple ARMv8 models).

Past
ontributors are Susmit Sarkar (litmus7), Tyler Sorensen (herd7), John Wi
kerson (herd7). The tool

litmus7 is inspired from an unreleased prototype by Thomas Braibant and Fran
es
o Zappa Nardelli.

Contents

I Running tests with litmus7 4

1 A tour of litmus7 4

1.1 A simple run . 4

1.2 Cross
ompilation . 5

1.3 Running several tests at on
e . 6

2 Controlling test parameters 7

2.1 Ar
hite
ture of tests . 7

2.2 A�nity . 9

2.2.1 Introdu
tion to a�nity . 9

2.2.2 Study of a�nity . 12

2.2.3 Advan
ed
ontrol . 13

2.2.4 Custom
ontrol . 15

2.3 Controlling exe
utable �les . 17

3 Advan
ed
ontrol of test parameters 18

3.1 Timebase syn
hronisation mode . 18

3.2 Advan
ed prefet
h
ontrol . 21

3.2.1 Custom prefet
h . 21

3.2.2 Prefet
h metadata . 22

3.2.3 �Stati
� prefet
h
ontrol . 24

4 Usage of litmus7 25

1

http://
aml.inria.fr/o
aml/

1

II Generating tests 30

5 Preamble 30

5.1 Relaxation of Sequential Consisten
y . 30

5.2 Introdu
tion to
andidate relaxations . 31

5.3 More
andidate relaxations . 32

5.4 Summary of simple
andidate relaxations . 35

5.4.1 Communi
ation
andidate relaxations . 35

5.4.2 Program order
andidate relaxations . 35

5.4.3 Fen
e
andidate relaxations . 36

6 Testing
andidate relaxations with diy7 36

6.1 Prin
iple . 36

6.2 Testing x86 . 37

7 Additional relaxations 38

7.1 Intra-pro
essor dependen
ies . 38

7.2 Composite relaxations and
umulativity . 40

7.3 Detour
andidate relaxations . 41

8 Test variations with diy
ross7 42

9 Identifying
oheren
e orders with observers 42

9.1 Simple observers . 43

9.2 More observers . 43

9.2.1 Fen
es and loops in observers . 43

9.2.2 Lo
al observers . 44

9.2.3 Performan
e of observers . 46

9.3 Three stores or more . 46

10 Command usage 47

10.1 A note on test names . 47

10.1.1 Family names . 47

10.1.2 Des
riptive names for variants . 48

10.2 Common options . 49

10.3 Usage of diyone7 . 50

10.4 Usage of diy
ross7 . 51

10.5 Usage of diy7 . 51

10.6 Usage of readRelax7 . 53

11 Additional tools: extra
ting
y
les and
lassi�
ation 53

11.1 Usage of m
y
le7 . 55

11.2 Usage of
lassify7 . 55

III Simulating memory models with herd7 56

12 Writing simple models 56

12.1 Sequential
onsisten
y . 56

12.2 Total Store Order (TSO) . 58

12.3 Sequential
onsisten
y, total order de�nition . 66

12.4 Computing
oheren
e orders . 70

2

13 Produ
ing pi
tures of exe
utions 72

13.1 Graph modes . 74

13.2 Showing forbidden exe
utions . 75

14 Model de�nitions 78

14.1 Overview . 78

14.2 Identi�ers . 79

14.3 Expressions . 81

14.4 Instru
tions . 84

14.5 Models . 87

14.6 Primitives . 87

14.7 Library . 88

15 Usage of herd7 89

15.1 Arguments . 89

15.2 Options . 89

15.3 Con�guration �les . 93

15.4 File sear
hing . 96

IV Some examples 97

16 Running several tests at on
e,
hanging
riti
al parameters 97

17 Cross
ompiling, a�nity experiment 100

18 Cross running, testing low-end devi
es 102

3

Part I

Running tests with litmus7

Traditionally, a litmus test is a small parallel program designed to exer
ise the memory model of a parallel,

shared-memory,
omputer. Given a litmus test in assembler (X86, Power or ARM) litmus7 runs the test.

Using litmus7 thus requires a parallel ma
hine, whi
h must additionally feature g

 and the pthreads

library. Our tool litmus7 has some limitations espe
ially as regards re
ognised instru
tions. Nevertheless,

litmus7 should a

ept all tests produ
ed by the
ompanion test generators (see Part II) and has been su
-

essfully used on Linux, Ma
OS, AIX and Android.

1 A tour of litmus7

1.1 A simple run

Consider the following (rather
lassi
al, store bu�ering) SB.litmus litmus test for X86:

X86 SB

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [x℄,$1 | MOV [y℄,$1 ;

MOV EAX,[y℄ | MOV EAX,[x℄ ;

lo
ations [x;y;℄

exists (0:EAX=0 /\ 1:EAX=0)

A litmus test sour
e has three main se
tions:

1. The initial state de�nes the initial values of registers and memory lo
ations. Initialisation to zero may

be omitted.

2. The
ode se
tion de�nes the
ode to be run
on
urrently � above there are two threads. Yes we know,

our X86 assembler syntax is a mistake.

3. The �nal
ondition applies to the �nal values of registers and memory lo
ations.

Run the test by:

% litmus7 SB.litmus

%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for SB.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%

X86 SB

"Fre PodWR Fre PodWR"

{x=0; y=0;}

P0 | P1 ;

MOV [x℄,$1 | MOV [y℄,$1 ;

MOV EAX,[y℄ | MOV EAX,[x℄ ;

exists (0:EAX=0 /\ 1:EAX=0)

Generated assembler

#START _litmus_P1

4

movl $1,(%r10)

movl (%r9),%eax

#START _litmus_P0

movl $1,(%r9)

movl (%r10),%eax

Test SB Allowed

Histogram (4 states)

40 *>0:EAX=0; 1:EAX=0;

499923:>0:EAX=1; 1:EAX=0;

500009:>0:EAX=0; 1:EAX=1;

28 :>0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 40, Negative: 999960

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=7dbd6b8e6dd4ab
2ef3d48b0376fb2e3

Observation SB Sometimes 40 999960

Time SB 0.44

...

The litmus test is �rst reminded, followed by a
tual assembler � the ma
hine is a 64 bits one, in-line address

referen
es disappeared, registers may
hange, and assembler syntax is now more familiar. The test has run

one million times, produ
ing one million �nal states, or out
omes for the registers EAX of threads P0 and P1.

The test run validates the
ondition, with 40 positive witnesses.

1.2 Cross
ompilation

With option -o <name.tar>, litmus7 does not run the test. Instead, it produ
es a tar ar
hive that
ontains

the C sour
es for the test.

Consider SB-PPC.litmus, a Power version of the previous test:

PPC SB-PPC

"Fre PodWR Fre PodWR"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r4) | lwz r3,0(r4) ;

exists (0:r3=0 /\ 1:r3=0)

Our target ma
hine (pp
) runs Ma
OS, whi
h we spe
ify with the -os option:

% litmus7 -o /tmp/a.tar -os ma
 SB-PPC.litmus

% s
p /tmp/a.tar pp
:/tmp

Then, on the remote ma
hine pp
:

pp
% mkdir SB &&
d SB

pp
% tar xf /tmp/a.tar

5

pp
% ls

omp.sh Makefile outs.
 outs.h README.txt run.sh SB-PPC.
 show.awk utils.
 utils.h

Test is
ompiled by the shell s
ript
omp.sh (or by (Gnu) make, at user's
hoi
e) and run by the shell s
ript

run.sh:

pp
% sh
omp.sh

pp
% sh run.sh

...

Test SB-PPC Allowed

Histogram (3 states)

1784 *>0:r3=0; 1:r3=0;

498564:>0:r3=1; 1:r3=0;

499652:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 1784, Negative: 998216

Condition exists (0:r3=0 /\ 1:r3=0) is validated

Hash=4ede
f6ab
507611612efae

1
4a9b

Observation SB-PPC Sometimes 1784 998216

Time SB-PPC 0.55

...

As we see, the
ondition validates also on Power. Noti
e that
ompilation produ
es an exe
utable �le,

SB-PPC.exe, whi
h
an be run dire
tly, for a less verbose output.

1.3 Running several tests at on
e

Consider the additional test STFW-PPC.litmus:

PPC STFW-PPC

"Rfi PodRR Fre Rfi PodRR Fre"

{

0:r2=x; 0:r5=y;

1:r2=y; 1:r5=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) ;

lwz r4,0(r5) | lwz r4,0(r5) ;

exists

(0:r3=1 /\ 0:r4=0 /\ 1:r3=1 /\ 1:r4=0)

To
ompile the two tests together, we
an give two �le names as arguments to litmus:

$ litmus7 -o /tmp/a.tar -os ma
 SB-PPC.litmus STFW-PPC.litmus

Or, more
onveniently, list the litmus sour
es in a �le whose name starts with �:

$
at �pp

SB-PPC.litmus

STFW-PPC.litmus

$ litmus7 -o /tmp/a.tar -os ma
 �pp

6

To run the test on the remote pp
 ma
hine, the same sequen
e of
ommands as in the one test
ase applies:

pp
% tar xf /tmp/a.tar && make && sh run.sh

...

Test SB-PPC Allowed

Histogram (3 states)

1765 *>0:r3=0; 1:r3=0;

498741:>0:r3=1; 1:r3=0;

499494:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 1765, Negative: 998235

Condition exists (0:r3=0 /\ 1:r3=0) is validated

Hash=4ede
f6ab
507611612efae

1
4a9b

Observation SB-PPC Sometimes 1765 998235

Time SB-PPC 0.57

...

Test STFW-PPC Allowed

Histogram (4 states)

480 *>0:r3=1; 0:r4=0; 1:r3=1; 1:r4=0;

499560:>0:r3=1; 0:r4=1; 1:r3=1; 1:r4=0;

499827:>0:r3=1; 0:r4=0; 1:r3=1; 1:r4=1;

133 :>0:r3=1; 0:r4=1; 1:r3=1; 1:r4=1;

Ok

Witnesses

Positive: 480, Negative: 999520

Condition exists (0:r3=1 /\ 0:r4=0 /\ 1:r3=1 /\ 1:r4=0) is validated

Hash=92b2
3f6332309325000656d0632131e

Observation STFW-PPC Sometimes 480 999520

Time STFW-PPC 0.56

...

Now, the output of run.sh shows the result of two tests.

2 Controlling test parameters

Users
an
ontrol some of testing
onditions. Those impa
t e�
ien
y and out
ome variability.

Sometimes one looks for a parti
ular out
ome� for instan
e, one may seek to get the out
ome 0:r3=1; 1:r3=1;

that is missing in the previous experiment for test SB-PPC. To that aim, varying test
onditions may help.

2.1 Ar
hite
ture of tests

Consider a test a.litmus designed to run on t threads P0,. . . , Pt−1. The stru
ture of the exe
utable a.exe

that performs the experiment is as follows:

• So as to bene�t from parallelism, we run n = max(1, a/t) (integer division) tests
on
urrently on a

ma
hine where a logi
al pro
essors are available.

• Ea
h of these (identi
al) tests
onsists in repeating r times the following sequen
e:

7

� Fork t (POSIX) threads T0, . . . Tt−1 for exe
uting P0,. . . , Pt−1. Whi
h thread exe
utes whi
h

ode is either �xed, or
hanging,
ontrolled by the laun
h mode. In our experien
e, the laun
h

mode has marginal impa
t.

In
a
he mode the Tk threads are re-used. As a
onsequen
e, t threads only are forked.

� Ea
h thread Tk exe
utes a loop of size s. Loop iteration number i exe
utes the
ode of Pk (in

�xed mode) and saves the �nal
ontents of its observed registers in some arrays indexed by i.
Furthermore, still for iteration i, memory lo
ation x is in fa
t an array
ell.

How this array
ell is a

essed depends upon the memory mode. In dire
t mode the array
ell is

a

essed dire
tly as x[i]; as a result,
ells are a

essed sequentially and false sharing e�e
ts are

likely. In indire
t mode the array
ell is a

essed by the means of a shu�ed array of pointers; as

a result we observed a mu
h greater variability of out
omes. Additionally, the in
rement of the

main loop (of size s)
an be set to a value or stride di�erent from the default of one. Running a

test several times with
hanging the stride value also proved quite e�e
tive in favouring out
ome

variability.

If the random preload mode is enabled, a preliminary loop of size s reads a random subset of the

memory lo
ations a

essed by Pk. Preload have a noti
eable e�e
t and teh random preload mode

is enabled by default. Starting from version 5.0, we provide a more pre
ise
ontrol over preloading

memory lo
ations � See Se
. 3.2.

The iterations performed by the di�erent threads Tk may be unsyn
hronised, exa
tly syn
hronised

by a pthread based barrier, or approximately syn
hronised by spe
i�

ode. Absen
e of syn
hro-

nisation may be interesting when t ex
eeds a. As a matter of fa
t, in this situation, any kind

of syn
hronisation leads to prohibitive running times. However, for a large value of parameter s
and small t we have observed spontaneous
on
urrent exe
ution of some iterations amongst many.
Pthread based barriers are exa
t but they are slow and in fa
t o�ers poor syn
hronisation for

short
ode sequen
es. The approximate syn
hronisation is thus the preferred te
hnique.

Starting from version 5.0, we provide a slightly altered user syn
hronisation mode: userfen
e,

whi
h alters user mode by exe
uting memory fen
es to speedup write propagation. The new

mode features overall better syn
hronisation, yielding dramati
 improvements on some examples.

However, out
ome variability may su�er from this more a

urate syn
hronisation, hen
e user

mode remains the default.

More importantly, we provide an additional exa
t, timebase syn
hronisation te
hnique: test

threads will �rst syn
hronise using polling syn
hronisation barrier
ode, agree on a target time-

base

2

value and then loop reading the timebase until it ex
eeds the target value. This te
hnique

yields very good syn
hronisation and allows �ne syn
hronisation tuning by assigning di�erent

starting delays to di�erent threads � see Se
. 3.1. As ARM does not provide timebase
ounters,

noti
e that �timebase� syn
hronisation for ARM silently degrades to syn
hronisation by the means

of the polling syn
hronisation barrier.

� Wait for the t threads to terminate and
olle
t out
omes in some histogram like stru
ture.

• Wait for the n tests to terminate and sum their histograms.

Hen
e, running a.exe produ
es n × r × s out
omes. Parameters n, a, r and s
an �rst be set di-

re
tly while invoking a.exe, using the appropriate
ommand line options. For instan
e, assuming t = 2,
./a.exe -a 201 -r 10k -s 1 and ./a.exe -n 1 -r 1 -s 1M will both produ
e one million out
omes,

but the latter is probably more e�
ient. If our ma
hine has 8
ores, ./a.exe -a 8 -r 1 -s 1M will yield

4 millions out
omes, in a time that we hope not to ex
eed too mu
h the one experien
ed with ./a.exe -n 1.

Also observe that the memory allo
ated is roughly proportional to n × s, while the number of Tk threads

reated will be t × n × r (t × n in
a
he mode). The run.sh shell s
ript transmits its
ommand line to all

the exe
utable (.exe) �les it invokes, thereby providing a
onvenient means to
ontrol testing
ondition for

2

Power and x86-based systems provide a user a

essible timebase
ounter that should provide
onsistent times to all
ores

and pro
essors.

8

several tests. Satisfa
tory test parameters are found by experimenting and the
ontrol of exe
utable �les by

ommand line options is designed for that purpose.

On
e satisfa
tory parameters are found, it is a nuisan
e to repeat them for every experiment. Thus,

parameters a, r and s
an also be set while invoking litmus, with the same
ommand line options. In fa
t

those settings
ommand he default values of .exe �les
ontrols. Additionally, the syn
hronisation te
hnique

for iterations, the memory mode, and several others
ompile time parameters
an be sele
ted by appropriate

litmus7
ommand line options. Finally, users
an re
ord frequently used parameters in
on�guration �les.

2.2 A�nity

We view a�nity as a s
heduler property that binds a (software, POSIX) thread to a given (hardware)

logi
al pro
essor. In the most simple situation a logi
al pro
essor is a
ore. However in the presen
e of

hyper-threading (x86) or simultaneous multi threading (SMT, Power) a given
ore
an host several logi
al

pro
essors.

2.2.1 Introdu
tion to a�nity

In our experien
e, binding the threads of test programs to sele
ted logi
al pro
essors yields signi�
ant

speedups and, more importantly, greater out
ome variety. We illustrate the issue by the means of an

example.

We
onsider the test pp
-iriw-lwsyn
.litmus:

PPC pp
-iriw-lwsyn

{

0:r2=x; 1:r2=x; 1:r4=y;

2:r4=y; 3:r2=x; 3:r4=y;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r4) ;

stw r1,0(r2) | lwsyn
 | stw r1,0(r4) | lwsyn
 ;

| lwz r3,0(r4) | | lwz r3,0(r2) ;

exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0)

The test
onsists of four threads. There are two writers (P0 and P2) that write the value one into two di�erent

lo
ations (x and y), and two readers that read the
ontents of x and y in di�erent orders � P1 reads x �rst,

while P3 reads y �rst. The load instru
tions lwz in reader threads are separated by a lightweight barrier

instru
tion lwsyn
. The �nal
ondition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0)
hara
terises

the situation where the reader threads see the writes by P0 and P2 in opposite order. The
orresponding

out
ome 1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0; is the only non-sequential
onsistent (non-SC, see Part II)

possible out
ome. By any reasonable memory model for Power, one expe
ts the
ondition to validate, i.e.

the non-SC out
ome to show up.

The tested ma
hine vargas is a Power 6 featuring 32
ores (i.e. 64 logi
al pro
essors, sin
e SMT is

enabled) and running AIX in 64 bits mode. So as not to disturb other users, we run only one instan
e of the

test, thus spe
ifying four available pro
essors. The litmus7 tool is absent on vargas. All these
onditions

ommand the following invo
ation of litmus7, performed on our lo
al ma
hine:

$ litmus7 -r 1000 -s 1000 -a 4 -os aix -ws w64 pp
-iriw-lwsyn
.litmus -o pp
.tar

$ s
p pp
.tar vargas:/var/tmp

On vargas we unpa
k the ar
hive and
ompile the test:

vargas% tar xf /var/tmp/pp
.tar && sh
omp.sh

Then we run the test:

9

vargas% ./pp
-iriw-lwsyn
.exe

Test pp
-iriw-lwsyn
 Allowed

Histogram (15 states)

163674:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

34045 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

40283 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

95079 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

33848 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

72201 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

32452 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

43031 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

73052 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

1 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

42482 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

90470 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

30306 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

43239 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

205837:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp
-iriw-lwsyn
 Never 0 1000000

Time pp
-iriw-lwsyn
 1.32

The non-SC out
ome does not show up.

Altering parameters may yield this out
ome. In parti
ular, we may try using all the available logi
al

pro
essors with option -a 64. A�nity
ontrol o�ers an alternative, whi
h is enabled at
ompilation time

with litmus7 option -affinity:

$ litmus7 ... -affinity in
r1 pp
-iriw-lwsyn
.litmus -o pp
.tar

$ s
p pp
.tar vargas:/var/tmp

Option -affinity takes one argument (in
r1 above) that spe
i�es the in
rement used while allo
ating

logi
al pro
essors to test threads. Here, the (POSIX) threads
reated by the test (named T0, T1, T2 and T3

in Se
. 2.1) will get bound to logi
al pro
essors 0, 1, 2, and 3, respe
tively.
Namely, by default, the logi
al pro
essors are ordered as the sequen
e 0, 1, . . . , A − 1 � where A is

the number of available logi
al pro
essors, whi
h is inferred by the test exe
utable

3

. Furthermore, logi
al

pro
essors are allo
ated to threads by applying the a�nity in
rement while s
anning the logi
al pro
essor

sequen
e. Observe that sin
e the laun
h mode is
hanging (the default) threads Tk
orrespond to di�erent

test threads Pi at ea
h run. The unpa
k
ompile and run sequen
e on vargas now yields the non-SC out
ome,

better out
ome variety and a lower running time:

vargas% tar xf /var/tmp/pp
.tar && make

vargas% ./pp
-iriw-lwsyn
.exe

Test pp
-iriw-lwsyn
 Allowed

Histogram (16 states)

180600:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

3

Parameter A is not to be
onfused with a of se
tion 2.1. The former serves to
ompute logi
al threads while the latter

governs the number of tests that run simultaneously. However parameters a will be set to A when a�nity
ontrol is enabled

and when a value is 0.

10

3656 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

18812 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

77692 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

2973 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

9 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

28881 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

75126 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

20939 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

30498 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

1234 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

89993 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

75769 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

76361 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

87864 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

229593:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

Ok

Witnesses

Positive: 9, Negative: 999991

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp
-iriw-lwsyn
 Sometimes 9 999991

Time pp
-iriw-lwsyn
 0.68

One may
hange the a�nity in
rement with the
ommand line option -i of exe
utable �les. For instan
e,

one binds the test threads to logi
al pro
essors 0, 2, 4 and 6 as follows:

vargas% ./pp
-iriw-lwsyn
.exe -i 2

Test pp
-iriw-lwsyn
 Allowed

Histogram (15 states)

160629:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

33389 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

43725 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

93114 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

33556 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

64875 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

34908 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

43770 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

64544 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

4 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

54633 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

92617 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

34754 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

54027 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

191455:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp
-iriw-lwsyn
 Never 0 1000000

Time pp
-iriw-lwsyn
 0.92

11

One observes that the non-SC out
ome does not show up with the new a�nity setting.

One may also bind test thread to logi
al pro
essors randomly with exe
utable option +ra.

vargas% ./pp
-iriw-lwsyn
.exe +ra

Test pp
-iriw-lwsyn
 Allowed

Histogram (15 states)

...

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp
-iriw-lwsyn
 Never 0 1000000

Time pp
-iriw-lwsyn
 1.85

As we see, the
ondition does not validate either with random a�nity. As a matter of fa
t, logi
al

pro
essors are taken at random in the sequen
e 0, 1, . . . , 63; while the su

essful run with -i 1 took them

in the sequen
e 0, 1, 2, 3. One
an limit the sequen
e of logi
al pro
essor with option -p, whi
h takes a

sequen
e of logi
al pro
essors numbers as argument:

vargas% ./pp
-iriw-lwsyn
.exe +ra -p 0,1,2,3

Test pp
-iriw-lwsyn
 Allowed

Histogram (16 states)

...

8 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

...

Ok

Witnesses

Positive: 8, Negative: 999992

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp
-iriw-lwsyn
 Sometimes 8 999992

Time pp
-iriw-lwsyn
 0.70

The
ondition now validates.

2.2.2 Study of a�nity

As illustrated by the previous example, both the running time and the out
omes of a test are sensitive to

a�nity settings. We measured running time for in
reasing values of the a�nity in
rement from 0 (whi
h

disables a�nity
ontrol) to 20, produ
ing the following �gure:

12

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 5 10 15 20

tim
e

(s
ec

.)

increment

As regards out
ome variety, we get all of the 16 possible out
omes only for an a�nity in
rement of 1.
The di�eren
es in running times
an be explained by referen
e to the mapping of logi
al pro
essors

to hardware. The ma
hine vargas
onsists in four MCM's (Multi-Chip-Module), ea
h MCM
onsists in

four �
hips�, ea
h
hip
onsists in two
ores, and ea
h
ore may support two logi
al pro
essors. As far as we

know, by querying vargaswith the AIX
ommands lsattr, bindpro
essor and llstat, the MCM's hold the

logi
al pro
essors 0�15, 16�31, 32�47 and 48�63, ea
h
hip holds the logi
al pro
essors 4k, 4k+1, 4k+2, 4k+3
and ea
h
ore holds the logi
al pro
essors 2k, 2k + 1.

The measure of running times for varying in
rements reveals two noti
eable slowdowns: from an in
rement

of 1 to an in
rement of 2 and from 5 to 6. The gap between 1 and 2 reveals the bene�ts of SMT for our

testing appli
ation. An in
rement of 1 yields both the greatest out
ome variety and the minimal running

time. The other gap may perhaps be explained by referen
e to MCM's: for a value of 5 the tests runs on the
logi
al pro
essors 0, 5, 10, 15, all belonging to the same MCM; while the next a�nity in
rement of 6 results

in running the test on two di�erent MCM (0, 6, 12 on the one hand and 18 on the other).

As a
on
lusion, a�nity
ontrol provides users with a
ertain level of
ontrol over thread pla
ement,

whi
h is likely to yield faster tests when threads are
onstrained to run on logi
al pro
essors that are �
lose�

one to another. The best results are obtained when SMT is e�e
tively enfor
ed. However, a�nity
ontrol

is no pana
ea, and the memory system may be stressed by other means, su
h as, for instan
e, allo
ating

important
hunks of memory (option -s).

2.2.3 Advan
ed
ontrol

For spe
i�
 experiments, the te
hnique of allo
ating logi
al pro
essors sequentially by following a �xed

in
rement may be two rigid. litmus7 o�ers a �ner
ontrol on a�nity by allowing users to supply the logi
al

pro
essors sequen
e. Noti
e that most users will probably not need this advan
ed feature.

Anyhow, so as to
on�rm that testing pp
-iriw-lwsyn
 bene�ts from not
rossing
hip boundaries, one

may wish to
on�ne its four threads to logi
al pro
essors 16 to 19, that is to the �rst
hip of the se
ond

MCM. This
an be done by overriding the default logi
al pro
essors sequen
e by an user supplied one given

as an argument to
ommand-line option -p:

vargas% ./pp
-iriw-lwsyn
.exe -p 16,17,18,19 -i 1

Test pp
-iriw-lwsyn
 Allowed

Histogram (16 states)

13

169420:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

1287 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

17344 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

85329 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

1548 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

3 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

27014 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

75160 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

19828 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

29521 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

441 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

93878 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

81081 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

76701 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

93623 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

227822:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

Ok

Witnesses

Positive: 3, Negative: 999997

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp
-iriw-lwsyn
 Sometimes 3 999997

Time pp
-iriw-lwsyn
 0.63

Thus we get results similar to the previous experiment on logi
al pro
essors 0 to 3 (option -i 1 alone).

We may also run four simultaneous instan
es (-n 4, parameter n of se
tion 2.1) of the test on the four

available MCM's:

vargas% ./pp
-iriw-lwsyn
.exe -p 0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51 -n 4 -i 1

Test pp
-iriw-lwsyn
 Allowed

Histogram (16 states)

...

57 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

...

Ok

Witnesses

Positive: 57, Negative: 3999943

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation pp
-iriw-lwsyn
 Sometimes 57 3999943

Time pp
-iriw-lwsyn
 0.75

Observe that, for a negligible penalty in running time, the number of non-SC out
omes in
reases signi�
antly.

By
ontrast, binding threads of a given instan
e of the test to di�erent MCM's results in poor running

time and no non-SC out
ome.

vargas% ./pp
-iriw-lwsyn
.exe -p 0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51 -n 4 -i 4

Test pp
-iriw-lwsyn
 Allowed

Histogram (15 states)

...

Witnesses

14

Positive: 0, Negative: 4000000

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is NOT validated

Time pp
-iriw-lwsyn
 1.48

In the experiment above, the in
rement is 4, hen
e the logi
al pro
essors allo
ated to the �rst instan
e of

the test are 0, 16, 32, 48, of whi
h indi
es in the logi
al pro
essors sequen
e are 0, 4, 8, 12, respe
tively. The
next allo
ated index in the sequen
e is 12 + 4 = 16. However, the sequen
e has 16 items. Wrapping around

yields index 0 whi
h happens to be the same as the starting index. Then, so as to allo
ate fresh pro
essors,

the starting index is in
remented by one, resulting in allo
ating pro
essors 1, 17, 33, 49 (indi
es 1, 5, 9, 13)
to the se
ond instan
e � see se
tion 2.3 for the full story. Similarly, the third and fourth instan
es will

get pro
essors 2, 18, 34, 50 and 3, 19, 35, 51, respe
tively. Attentive readers may have noti
ed that the same

experiment
an be performed with option -i 16 and no -p option.

Finally, users should probably be aware that at least some versions of Linux for x86 feature a less obvious

mapping of logi
al pro
essors to hardware. On a bi-pro
essor, dual-
ore, 2-ways hyper-threading, Linux,

AMD64 ma
hine, we have
he
ked that logi
al pro
essors residing on the same
ore are k and k + 4, where
k is an arbitrary
ore number ranging from 0 to 3. As a result, a proper
hoi
e for favouring e�e
tive hyper-
threading on su
h a ma
hine is -i 4 (or -p 0,4,1,5,2,6,3,7 -i 1). More worthwhile noti
ing, perhaps,

the straightforward
hoi
e -i 1 disfavours e�e
tive hyper-threading. . .

2.2.4 Custom
ontrol

Most tests run by litmus7 are produ
ed by the litmus test generators des
ribed in Part II. Those tests

in
lude meta-information that may dire
t a�nity
ontrol. For instan
e we generate one test with the diyone7

tool, see Se
. 5.2. More spe
i�
ally we generate IRIW+lwsyn
s for Power (pp
-iriw-lwsyn
 in the previous

se
tion) as follows:

% diyone7 -ar
h PPC -name IRIW+lwsyn
s Rfe LwSyn
dRR Fre Rfe LwSyn
dRR Fre

We get the new sour
e �le IRIW+lwsyn
s.litmus:

PPC IRIW+lwsyn
s

"Rfe LwSyn
dRR Fre Rfe LwSyn
dRR Fre"

Prefet
h=0:x=T,1:x=F,1:y=T,2:y=T,3:y=F,3:x=T

Com=Rf Fr Rf Fr

Orig=Rfe LwSyn
dRR Fre Rfe LwSyn
dRR Fre

{

0:r2=x;

1:r2=x; 1:r4=y;

2:r2=y;

3:r2=y; 3:r4=x;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) ;

stw r1,0(r2) | lwsyn
 | stw r1,0(r2) | lwsyn
 ;

| lwz r3,0(r4) | | lwz r3,0(r4) ;

exists

(1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0)

The relevant meta-information is the �Com� line that des
ribes how test threads are related � for instan
e,

thread 0 stores a value to memory that is read by thread 1, written �Rf� (see Part II for more details).

Custom a�nity
ontrol will tend to run threads related by �Rf� on �
lose� logi
al pro
essors, where we

an for instan
e
onsider that
lose logi
al pro
essors belong to the same physi
al
ore (SMT for Power).

This minimal logi
al pro
essor topology is des
ribed by two litmus7
ommand-line option: -smt <n> that

spe
i�es n-way SMT; and -smt_mode (seq|end) that spe
i�es how logi
al pro
essors from the same
ore

are numbered. For a 8-
ores 4-ways SMT power7 ma
hine we invoke litmus7 as follows:

15

% litmus7 -mem dire
t -smt 4 -smt_mode seq -affinity
ustom -o a.tar IRIW+lwsyn
s.litmus

Noti
e that memory mode is dire
t and that the number of available logi
al pro
essors is unspe
i�ed, resulting

in running one instan
e of the test. More importantly, noti
e that a�nity
ontrol is enabled -affinity

ustom, additionally spe
ifying
ustom a�nity mode.

We then upload the ar
hive a.tar to our Power7 ma
hine, unpa
k,
ompile and run the test:

power7% tar xmf a.tar

power7% make

...

power7% ./IRIW+lwsyn
s.exe -v

./IRIW+lwsyn
s.exe -v

IRIW+lwsyn
s: n=1, r=1000, s=1000, +rm, +
a, p='0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31'

thread allo
ation:

[23,22,3,2℄ {5,5,0,0}

Option -v instru
ts the exe
utable to show settings of the test harness: we see that one instan
e of the

test is run (n=1), size parameters are reminded (r=1000, s=1000) and shu�ing of indire
t memory mode is

performed (+rm). A�nity settings are also given: mode is
ustom (+
a) and the logi
al pro
essor sequen
e

inferred is given (-p 0,1,...,31). Additionally, the allo
ation of test threads to logi
al pro
essors is given,

as [...℄, as well as the allo
ation of test threads to physi
al
ores, as {...}.

Here is the run output proper:

Test IRIW+lwsyn
s Allowed

Histogram (15 states)

2700 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

142 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

37110 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

181257:>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

78 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

15 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

103459:>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

149486:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

30820 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

9837 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

2399 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

204629:>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

214700:>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

5186 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

58182 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

Ok

Witnesses

Positive: 15, Negative: 999985

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=836eb3085132d3
b06973469a08098df

Com=Rf Fr Rf Fr

Orig=Rfe LwSyn
dRR Fre Rfe LwSyn
dRR Fre

Affinity=[2, 3℄ [0, 1℄ ; (1,2) (3,0)

Observation IRIW+lwsyn
s Sometimes 15 999985

Time IRIW+lwsyn
s 0.70

As we see, the test validates. Namely we observe the non-SC behaviour of IRIW in spite of the presen
e

of two lwsyn
 barriers. We may also noti
e, in the exe
utable output some meta-information related to

16

a�nity: it reads that threads 2 and 3 on the one hand and threads 0 and 1 on the other are
onsidered

�
lose� (i.e. will run on the same physi
al
ore); while threads 1 and 2 on the one hand and threads 3 and 0

on the other are
onsidered �far� (i.e. will run on di�erent
ores).

Custom a�nity
an be disabled by enabling another a�nity mode. For instan
e with -i 0 we spe
ify an

a�nity in
rement of zero. That is, a�nity
ontrol is disabled altogether:

power7% ./IRIW+lwsyn
s.exe -i 0 -v

./IRIW+lwsyn
s.exe -i 0 -v

IRIW+lwsyn
s: n=1, r=1000, s=1000, +rm, i=0, p='0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31'

Test IRIW+lwsyn
s Allowed

Histogram (15 states)

...

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=836eb3085132d3
b06973469a08098df

Com=Rf Fr Rf Fr

Orig=Rfe LwSyn
dRR Fre Rfe LwSyn
dRR Fre

Observation IRIW+lwsyn
s Never 0 1000000

Time IRIW+lwsyn
s 0.90

As we see, the test does not validate under those
onditions.

Noti
e that se
tion 17 des
ribes a
omplete experiment on a�nity
ontrol.

2.3 Controlling exe
utable �les

Test
onditions Any exe
utable �le produ
ed by litmus7 a

epts the following
ommand line options.

-v Be verbose,
an be repeated to in
rease verbosity. Spe
ifying -v is a
onvenient way to look at the default

of options.

-q Be quiet.

-a <n> Run maximal number of tests
on
urrently for n available logi
al pro
essors � parameter a in

Se
. 2.1. Noti
e that if a�nity
ontrol is enabled (see below), -a 0 will set parameter a to the number
of logi
al pro
essors e�e
tively available.

-n <n> Run n tests
on
urrently � parameter n in Se
. 2.1.

-r <n> Perform n runs � parameter r in Se
. 2.1.

-fr <f> Multiply r by f (f is a �oating point number).

-s <n> Size of a run � parameter s in Se
. 2.1.

-fs <f> Multiply s by f .

-f <f> Multiply s by f and divide r by f .

Noti
e that options -s and -r a

ept a generalised syntax for their integer argument: when su�xed by k

(resp. M) the integer gets multiplied by 103 (resp. 106).
The following options are a

epted only for tests
ompiled in indire
t memory mode (see Se
. 2.1):

-rm Do not shu�e pointer arrays, resulting a behaviour similar do dire
t mode, without re
ompilation.

17

+rm Shu�e pointer arrays, provided for regularity.

The following option is a

epted only for tests
ompiled with a spe
i�ed stride value (see Se
. 2.1).

-st <n> Change stride to <n>. The default stride is spe
i�ed at
ompile time by litmus7 option -stride.

The following option is a

epted when enabled at
ompile time:

-l <n> Insert the assembly
ode of ea
h thread in a loop of size <n>.

A�nity If a�nity
ontrol has been enabled at
ompilation time (for instan
e, by supplying option -affinity

in
r1 to litmus7), the exe
utable �le produ
ed by litmus7 a

epts the following
ommand line options.

-p <ns> Logi
al pro
essors sequen
e. The sequen
e <ns> is a
omma separated list of integers, The default

sequen
e is inferred by the exe
utable as 0, 1, . . . , A − 1, where A is the number of logi
al pro
essors

featured by the tested ma
hine; or is a sequen
e spe
i�ed at
ompile time with litmus7 option -p.

-i <n> In
rement for allo
ating logi
al pro
essors to threads. Default is spe
i�ed at
ompile time by litmus7

option -affinity in
r<n>. Noti
e that -i 0 disable a�nity and that .exe �les reje
t the -i option

when a�nity
ontrol has not been enabled at
ompile time.

+ra Perform random allo
ation of a�nity at ea
h test round.

+
a Perform
ustom a�nity.

Noti
e that when
ustom a�nity is not available, would it be that the test sour
e la
ked meta-information

or that logi
al pro
essor topology was not spe
i�ed at
ompile-time, then +
a behaves as +ra.

Logi
al pro
essors are allo
ated test instan
e by test instan
e (parameter n of Se
. 2.1) and then thread by

thread, s
anning the logi
al pro
essor sequen
e left-to-right by steps of the given in
rement. More pre
isely,

assume a logi
al pro
essor sequen
e P = p0, p1, . . . , pA−1 and an in
rement i. The �rst pro
essor allo
ated
is p0, then pi, then p2i et
, Indi
es in the sequen
e P are redu
ed modulo A so as to wrap around. The

starting index of the allo
ation sequen
e (initially 0) is re
orded, and
oin
iden
e with the index of the next

pro
essor to be allo
ated is
he
ked. When
oin
iden
e o

urs, a new index is
omputed, as the previous

starting index plus one, whi
h also be
omes the new starting index. Allo
ation then pro
eeds from this new

starting index. That way, all the pro
essors in the sequen
e will get allo
ated to di�erent threads naturally,

provided of
ourse that less than A threads are s
heduled to run. See se
tion 2.2.3 for an example with

A = 16 and i = 4.

3 Advan
ed
ontrol of test parameters

3.1 Timebase syn
hronisation mode

Timebase syn
hronisation of the testing loop iterations (see Se
. 2.1) is sele
ted by litmus7
ommand line

option -barrier timebase. In that mode, test threads will �rst syn
hronise using polling syn
hronisation

barrier
ode, agree on a target timebase value and then loop reading the timebase until it ex
eeds the target

value. Some tests demonstrate that timebase syn
hronisation is more pre
ise than user syn
hronisation

(-barrier user and default).

For instan
e,
onsider the x86 test 6.SB, a 6-thread analog of the SB test:

X86 6.SB

"Fre PodWR Fre PodWR Fre PodWR Fre PodWR Fre PodWR Fre PodWR"

{

}

P0 | P1 | P2 | P3 | P4 | P5 ;

MOV [x℄,$1 | MOV [y℄,$1 | MOV [z℄,$1 | MOV [a℄,$1 | MOV [b℄,$1 | MOV [
℄,$1 ;

18

MOV EAX,[y℄ | MOV EAX,[z℄ | MOV EAX,[a℄ | MOV EAX,[b℄ | MOV EAX,[
℄ | MOV EAX,[x℄ ;

exists

(0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0)

As for SB, the �nal
ondition of 6.SB identi�es exe
utions where ea
h thread loads the initial value 0 of a

lo
ation that is writtent into by another thread.

Thread 0

a: Wx=1

b: Ry=0 l: Rx=0

: Wy=1

Thread 1

d: Rz=0

e: Wz=1

Thread 2

f: Ra=0

g: Wa=1

Thread 3

h: Rb=0

i: Wb=1

Thread 4

j: R
=0

k: W
=1

Thread 5

po

fr

fr

po

fr

po

fr

po

fr

po

fr

po

rf rf rf

rf

rf rf

We �rst
ompile the test in user syn
hronisation mode, saving litmus7 output �les into the dire
tory R:

% mkdir -p R

% litmus7 -barrier user -vb true -o R 6.SB.litmus

%
d R

% make

The additional
ommand line option -vb true a
tivates the printing of some timing information on syn-

hronisations.

We then dire
tly run the test exe
utable 6.SB.exe:

% ./6.SB.exe

Test 6.SB Allowed

Histogram (62 states)

7569 :>0:EAX=1; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

8672 :>0:EAX=0; 1:EAX=1; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

326 :>0:EAX=1; 1:EAX=0; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

907 :>0:EAX=0; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0) is NOT validated

Hash=107f1303932972b3aba
e3ee4027408e

Observation 6.SB Never 0 1000000

Time 6.SB 0.85

The targeted out
ome � reading zero in the EAX registers of the 6 threads � is not observed. We
an

observe syn
hronisation times for all tests runs with the exe
utable
ommand line option +vb:

% ./6.SB.exe +vb

99999: 162768 420978 564546 -894 669468

99998: -93 3 81 -174 -651

19

99997: -975 -30 -33 93 -192

99996: 990 1098 852 1176 774

...

We see �ve
olumns of numbers that list, for ea
h test run, the starting delays of P1, P2 et
. with respe
t

to P0, expressed in timebase ti
ks. Obviously, syn
hronisation is rather loose, there are always two threads

whose starting delays di�er of about 1000 ti
ks.
We now
ompile the same test in timebase syn
hronisation mode, saving litmus7 output �les into the

pre-existing dire
tory RT:

% mkdir -p RT

% litmus7 -barrier timebase -vb true -o RT 6.SB.litmus

%
d RT

% make

And we run the test dire
tly (option -vb disable the printing of any syn
hronisation timing information):

% ./6.SB.exe -vb

Test 6.SB Allowed

Histogram (64 states)

60922 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

38299 :>0:EAX=1; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

598 :>0:EAX=0; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

142 :>0:EAX=1; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

Ok

Witnesses

Positive: 60922, Negative: 939078

Condition exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0) is validated

Hash=107f1303932972b3aba
e3ee4027408e

Observation 6.SB Sometimes 60922 939078

Time 6.SB 1.62

We now see that the test validates. Moreover all of the 64 possible out
omes are observed.
Timebase syn
hronisation works as follows: at every iteration,

1. one of the threads reads timebase T ;

2. all threads syn
hronise by the means of a polling syn
hronisation barrier;

3. ea
h thread
omputes Ti = T + δi, where δi is the timebase delay, a thread spe
i�

onstant;

4. ea
h thread loops, reading the timebase until the read value ex
eeds Ti.

By default the timebase delay δi is 2
11 = 2048 for all threads.

The pre
ision of timebase syn
hronisation
an be illustrated by enabling the printing of all syn
hronisation

timings:

% ./6.SB.exe +vb

99999: 672294[1℄ 671973[1℄ 672375[1℄ 672144[1℄ 672303[1℄ 672222[1℄

99998: 4524[1℄ 4332[1℄ 4446[1℄ 2052[65℄ 2064[73℄ 4095[1℄

...

99983: 4314[1℄ 3036[1℄ 3141[1℄ 2769[1℄ 4551[1℄ 3243[1℄

99982:* 2061[36℄ 2064[33℄ 2067[11℄ 2079[12℄ 2064[14℄ 2064[24℄

99981: 2121[1℄ 2382[1℄ 2586[1℄ 2643[1℄ 2502[1℄ 2592[1℄

...

20

For ea
h test iteration and ea
h thread, two numbers are shown (1) the last timebase value read by and (2)

(in bra
kets [. . . ℄) how many iterations of loop 4. were performed. Additionally a star �*� indi
ates the

o

urren
e of the targeted out
ome. Here, we see that a nearly perfe
t syn
hronisation
an be a
hieved (
f.

line 99982: above).

On
e timebase syn
hronisation have been sele
ted (litmus7 option -barrier timebase), test exe
utable

behaviour
an be altered by the following two
ommand line options:

-ta <n> Change the timebase delay δi of all threads.

-tb <0:n0;1:n1;· · ·> Change the timebase delay δi of individual threads.

The litmus7
ommand line option -vb true (verbose barrier) governs the printing of syn
hronisation

timings. It
omes handy when
hoosing values for the -ta and -tb options. When set, the exe
utable show

syn
hronisation timings for out
omes that validate the test �nal
ondition. This default behaviour
an be

altered with the following two
ommand line options:

-vb Do not show syn
hronisation timings.

+vb Show syn
hronisation timings for all out
omes.

Syn
hronisation timings are expressed in timebase ti
ks. The format depends on the syn
hronisation mode

(litmus7 option -barrier). This se
tion just gave two examples for user mode (timings are show as di�eren
es

from thread P0); and for timebase mode (timings are shown as di�eren
es from a
ommonly agreed by all

thread timebase value). Noti
e that, when a�nity
ontrol is enabled, the running logi
al pro
essors of

threads are also shown.

3.2 Advan
ed prefet
h
ontrol

Supplying the tags
ustom, stati
, stati
1 or stati
2 to litmus7
ommand line option -preload
om-

mands the insertion of
a
he prefet
h or �ush instru
tions before every test instan
e.

In
ustom mode the exe
ution of su
h
a
he management instru
tion is under total user
ontrol, the

other, �stati
�, modes o�er less
ontrol to the user, for the sake of not altering test
ode proper.

3.2.1 Custom prefet
h

Custom prefet
h mode o�ers
omplete
ontrol over
a
he management instru
tions. Users enable this mode

by supplying the
ommand line option -preload
ustom to litmus7. For instan
e one may
ompile the x86

test 6.SB.litmus as follows:

% mkdir -p R

% litmus7 -mem indire
t -preload
ustom -o R 6.SB.litmus

%
d R

% make

Noti
e the test is
ompiled in indire
t memory mode, in order to redu
e false sharing e�e
ts.

The exe
utable 6.SB.exe a

epts two new
ommand line options: -prf and -pra. Those options takes

arguments that des
ribe
a
he management instru
tions. The option -pra takes one letter that stands for a

a
he management instru
tion as we here des
ribe:

I: do nothing, F:
a
he �ush, T:
a
he tou
h, W:
a
he tou
h for a write.

All those
a
he management instru
tions are not provided by all ar
hite
tures, in
ase some instru
tion is

missing, the letters behave as follows:

F: do nothing, T: do nothing, W: behave as T.

With -pra X the
ommanded a
tion applies to all threads and all variables, for instan
e:

21

% ./6.SB.exe -pra T

will perform a run where every test thread tou
hes the test lo
ations that it refers to (i.e. x and y for

Thread 0, y and z for Thread 1, et
.) before exe
uting test
ode proper. Although one may a
hieve

interesting results by using this -pra option, the more sele
tive -prf option should prove more useful.

The -prf option takes a
omma separated list of
a
he managment dire
tives. A
a
he management di-

re
tive is n:lo
=X , where n is a thread number, lo
 is a program variable, and X is a
a
he manage-

ment
ontrole letter. For instan
e, -prf 0:y=T instru
ts thread 0 to tou
h lo
ation y. More generally,

having ea
h thread of the test 6.SB to tou
h the memory lo
ation it reads with its se
ond instru
tion

would favor reading the initial value of these lo
ations, and thus validating the �nal
ondition of the test

�(0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0)�.

Noti
e that those lo
ations
an be found by looking at the test
ode or at the diagram of the target

exe
ution. Let us have a try:

./6.SB.exe -prf 0:y=T,1:z=T,2:a=T,3:b=T,4:
=T,5:x=T

Test 6.SB Allowed

Histogram (63 states)

10 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

Witnesses

Positive: 10, Negative: 999990

...

Prefet
h=0:y=T,1:z=T,2:a=T,3:b=T,4:
=T,5:x=T

...

As
an be seen, the �nal
ondition is validated. Also noti
e that the prefet
h dire
tives used during the run

are reminded. If given several times, -prf options
umulate, the rightmost dire
tives taking pre
eden
e in

ase of ambiguity. As a
onsequen
e, one may a
hieve the same prefet
hing e�e
t as above with:

% ./6.SB.exe -prf 0:y=T -prf 1:z=T -prf 2:a=T -prf 3:b=T -prf 4:
=T -prf 5:x=T

3.2.2 Prefet
h metadata

The sour
e
ode of tests may in
lude prefet
h dire
tives as metadata pre�xed with �Prefet
h=�. In parti
ular,

the generators of the diy7 suite (see Part II) produ
e su
h metadata. For instan
e in the
ase of the 6.SB

test (generated sour
e 6.SB+Prefet
h.litmus), this metadata reads:

Prefet
h=0:x=F,0:y=T,1:y=F,1:z=T,2:z=F,2:a=T,3:a=F,3:b=T,4:b=F,4:
=T,5:
=F,5:x=T

That is, ea
h thread �ushes the lo
ation it stores to and tou
hes ea
h lo
ation it reads from. Noti
e that

ea
h thread starts with a memory lo
ation a

ess (here a store) and ends with another (here a load). The

idea simply is to a

elerate the exit a

ess (with a
a
he tou
h) while delaying the entry a

ess (with a
a
he

�ush).

When prefet
h metadata is available, it a
ts as the default of prefet
h dire
tives:

% litmus7 -mem indire
t -preload
ustom -o R 6.SB+Prefet
h.litmus

%
d R

% make

Then we run the test by:

% ./6.SB+Prefet
h.exe

Test 6.SB Allowed

Histogram (63 states)

674 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

22

...

Witnesses

Positive: 674, Negative: 999326

...

Prefet
h=0:x=F,0:y=T,1:y=F,1:z=T,2:a=T,2:z=F,3:a=F,3:b=T,4:b=F,4:
=T,5:
=F,5:x=T

...

One may noti
e that the prefet
h dire
tives from the sour
e �le medata found its way to the test exe
utable.

As with any kind of metadata, one
an
hange the prefet
h metadata by editing the litmus sour
e �le,

or better by using the -hints
ommand line option. The -hints
ommand line option takes a �lename as

argument. This �le is a mapping that asso
iates new metadata to test names. As an example, we reverse

diy7 s
heme for
a
he management dire
tives: a

elerating entry a

esses and delaying exit a

esses:

%
at map.txt

6.SB Prefet
h=0:x=W,0:y=F,1:y=W,1:z=F,2:a=F,2:z=W,3:a=W,3:b=F,4:b=W,4:
=F,5:
=W,5:x=F

% litmus7 -mem indire
t -preload
ustom -hints map.txt -o R 6.SB.litmus

%
d R

% make

...

% ./6.SB.exe

Test 6.SB Allowed

Histogram (63 states)

24 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

Prefet
h=0:x=W,0:y=F,1:y=W,1:z=F,2:a=F,2:z=W,3:a=W,3:b=F,4:b=W,4:
=F,5:
=W,5:x=F

...

As we see above, the �nal
ondition validates. It does so in spite of the apparently unfavourable
a
he

management dire
tives.

We
an experiment further without re
ompilation, by using the -pra and -prf
ommand line options of

the test exe
utable. Those are parsed left-to-right, so that we
an (1)
an
el any default
a
he management

dire
tive with -pra I and (2) enable
a
he tou
h for the stores:

% ./6.SB.exe -pra I -prf 0:x=W -prf 1:y=W -prf 2:z=W -prf 3:a=W -prf 4:b=W -prf 5:
=W

Test 6.SB Allowed

...

Witnesses

Positive: 0, Negative: 1000000

...

Prefet
h=0:x=W,1:y=W,2:z=W,3:a=W,4:b=W,5:
=W

As we see, the �nal
ondition does not validate.

By
ontrast, �ushing or tou
hing the lo
ations that the threads load permit to repetitively a
hieve

validation:

hi% ./6.SB.exe -pra I -prf 0:y=F -prf 1:z=F -prf 2:a=F -prf 3:b=F -prf 4:
=F -prf 5:x=F

Test 6.SB Allowed

Histogram (63 states)

211 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

% ./6.SB.exe -pra I -prf 0:y=T -prf 1:z=T -prf 2:a=T -prf 3:b=T -prf 4:
=T -prf 5:x=T

Test 6.SB Allowed

Histogram (63 states)

10 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

23

As a
on
lusion, interpreting the impa
t of
a
he management dire
tives is not easy. However,
ustom

preload mode (litmus
ommand line option -preload
ustom) and test exe
utable options -pra and -prf

allow experimentation on spe
i�
 tests.

3.2.3 �Stati
� prefet
h
ontrol

Custom prefet
h mode
omes handy when one wants to tailor
a
he management dire
tives for a parti
ular

test. In pra
ti
e, we run bat
hes of tests using sour
e metadata for prefet
h dire
tives. In su
h a setting, the

ode that interprets the prefet
h dire
tives is useless, as we do not use the -prf option of the test exe
utables.

As this
ode get exe
uted before ea
h test thread
ode, it may impa
t test results. It is desirable to supress

this
ode from test exe
utables, still performing
a
he management instru
tions. To that aim, litmus7

provides some �stati
� preload modes, enabled with
ommand line options -preload stati
, -preload

stati
1 and -preload stati
2.

In the former mode -preload stati
 and without any further user intervention, ea
h test thread exe
utes

the
a
he management instru
tions
ommanded by the Prefet
h metadata:

% mkdir -p S

% litmus7 -mem indire
t -preload stati
 -o R 6.SB+Prefet
h.litmus

% make -C S

% S/6.SB+Prefet
h.exe

Test 6.SB Allowed

Histogram (63 states)

804 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

Observation 804 999196

...

As we
an see above, the e�e
t of the
a
he management instru
tions looks more favorable than in
ustom

preload mode.

Users still have a limited
ontrol on the exe
ution of
a
he management instru
tions: produ
ed exe
utable

a

ept a new -prs <n> option, whi
h take a positive or null integer as argument. Then, ea
h test thread

exe
utes the
a
he management instru
tions
ommanded by sour
e metadata with probability 1/n, the
spe
ial value n = 0 disabling prefet
h altogether. The default for the -prs options is �1� (always exe
ute

the
a
he management instru
tions). Let us try:

% S/6.SB+Prefet
h.exe -prs 0 | grep Observation

Observation 6.SB Never 0 1000000

% S/6.SB+Prefet
h.exe -prs 1 | grep Observation

Observation 6.SB Sometimes 901 999099

% S/6.SB+Prefet
h.exe -prs 2 | grep Observation

Observation 6.SB Sometimes 29 999971

% S/6.SB+Prefet
h.exe -prs 3 | grep Observation

Observation 6.SB Sometimes 16 999984

In those experiments we show the �Observation� �eld of litmus7 output: this �eld gives the
ount of

out
omes that validate the �nal
ondition, followed by the
ount of out
omes that do not validate the �nal

ondition. The above
ounts
on�rm that
a
he management instru
tions favor validation.

The remaining preload modes stati
1 and stati
2 are similar, ex
ept that they produ
e exe
utable �les

that do not a

ept the -prs option. Furthermore, in the former mode -preload stati
1
a
he management

instru
tions are always exe
uted, while in the latter mode -preload stati
2
a
he management instru
tions

are exe
uted with probability 1/2. Those modes thus a
t as pure stati
 mode (litmus7 option -preload

stati
), with runtime options -prs 1 and -prs 2 respe
tively. Moreover, as the test s
a�old in
ludes no

ode to interpret the -prs <n> swit
h, the test
ode is less perturbed. In pra
ti
e and for the 6.SB example,

there is little di�eren
e:

24

% mkdir -p S1 S2

% litmus7 -mem indire
t -preload stati
1 -o S1 6.SB+Prefet
h.litmus

% litmus7 -mem indire
t -preload stati
2 -o S2 6.SB+Prefet
h.litmus

% make -C S1 && make -C S2

...

% S1/6.SB+Prefet
h.exe | grep Observation

Observation 6.SB Sometimes 1119 998881

% S2/6.SB+Prefet
h.exe | grep Observation

Observation 6.SB Sometimes 16 999984

4 Usage of litmus7

Arguments

litmus7 takes �le names as
ommand line arguments. Those �les are either a single litmus test, when having

extension .litmus, or a list of �le names, when pre�xed by �. Of
ourse, the �le names in ��les
an

themselves be ��les.

Options

There are many
ommand line options. We des
ribe the more useful ones:

General behaviour

-version Show version number and exit.

-libdir Show installation dire
tory and exit.

-v Be verbose,
an be repeated to in
rease verbosity.

-ma
h <name> Read
on�guration �le name.
fg. See the next se
tion for the syntax of
on�guration �les.

-o <dest> Save C-sour
e of test �les into <dest> instead of running them. If argument <dest> is an

ar
hive (extension .tar) or a
ompressed ar
hive (extension .tgz), litmus7 builds an ar
hive: this is

the �
ross
ompilation feature� demonstrated in Se
. 1.2. Otherwise, <dest> is interpreted as the name

of an existing dire
tory and tests are saved in it.

-driver (shell|C|XCode) Choose the driver that will run the tests. In the �shell� (and default) mode,

ea
h test will be
ompiled into an exe
utable. A dedi
ated shell s
ript run.sh will laun
h the test

exe
utables. In the �C� mode, one exe
utable run.exe is produ
ed, whi
h will laun
h the tests. Finally,

the XCode mode is for in
lusion of the tests into a dedi
ated iOS App, whi
h we do not distribute at

the moment.

-
rossrun <(user�)?host(:port)?|adb> When the shell driver is used (-driver shell above), instru
t

the run.sh s
ript to run individual tests on a remote ma
hine. The remote host
an be
onta
ted by

the means of ssh or the Android Debug Bridge.

ssh user is a login name on the the remote host, <host> is the name of the remote host, and port is

a port-number whi
h
an be omitted when standard (22).

adb Tests will be run in the remote dire
tory /data/tmp.

This option may be useful when the tested ma
hine has little disk spa
e or a
rippled installation.

Default is disabled � i.e. run tests on the ma
hine where the run.sh s
ript runs.

-index <�name> Save the sour
e names of
ompiled �les in index �le �name.

25

Test
onditions The following options set the default values of the options of the exe
utable �les produ
ed:

-a <n> Run maximal number of tests
on
urrently for n available logi
al pro
essors � set default value for

-a of Se
. 2.3. Default is 1 (run one test). When a�nity
ontrol is enabled, the value 0 has the spe
ial
meaning of having exe
utables to set the number of available logi
al pro
essors a

ording to how many

are a
tually present.

-limit <bool> Do not pro
ess tests with more than n threads, where n is the number of available
ores

de�ned above. Default is true.

-r <n> Perform n runs � set default value for option -r of Se
. 2.3. The option a

epts generalised syntax

for integers and default is 10.

-s <n> Size of a run � set default value for option -s of Se
. 2.3. The option a

epts generalised syntax

for integers and default is 100000 (or 100k).

The following additional options
ontrol the various modes des
ribed in Se
. 2.1, and more. Those
annot

be
hanged without running litmus7 again:

-barrier (user|userfen
e|pthread|none|timebase) Set syn
hronisation mode, default user. Syn
hro-

nisation modes are des
ribed in Se
. 2.1

-laun
h (
hanging|fixed) Set laun
h mode, default
hanging.

-mem (indire
t|dire
t) Set memory mode, default indire
t. It is possible to instru
t exe
utables
om-

piled in indire
t mode to behave almost as if
ompiled in dire
t mode, see Se
. 2.3.

-stride <n> Spe
ify a stride value of <n> � set default value for option -st of Se
. 2.3. See Se
. 2.1 for

details on the stride parameter. If <n> is negative or zero, restore the default, whi
h is stride feature

disabled.

-st <n> Alias for -stride <n>.

-para (self|shell) Perform several tests
on
urrently, either by forking POSIX threads (as des
ribed in

Se
. 2.1), or by forking Unix pro
esses. Only applies for
ross
ompilation. Default is self.

-allo
 (dynami
|stati
|before) Set memory allo
ation mode. In �dynami
� and �before� modes, the

memory used by test threads is allo
ated with mallo
� in �before� mode, memory is allo
ated before

forking test instan
es. In �stati
� mode, the memory is pre-allo
ated as stati
 arrays. In that latter

ase, the size of allo
ated arrays depend upon
ompile time de�ned parameters: the number of available

logi
al pro
essors (see option -a <n>) and the size of a run (see option -s <n>). It remains possible to

hange those those at exe
ution time, provided the resulting memory size does not ex
eed the
ompile

time value. Default is dynami
.

-preload (no|random|
ustom|stati
|stati
1|stati
2) Spe
ify preload mode (see Se
. 2.1), default is

random. Starting from version 5.0 we provide additional �
ustom� and �stati
� modes for a �ner
ontrol

of prefet
hing and �ushing of some memory lo
ations by some threads. See Se
 3.2.

-safer (no|all|write) Spe
ify safer mode, default is write. When instru
ted to do so, exe
utable �les

perform some
onsisten
y
he
ks. Those are intended both for debugging and for dynami
ally
he
king

some assumptions on POSIX threads that we rely upon. More spe
i�
ally the test harness
he
ks for

the stabilisation of memory lo
ations after a test round in the �all� and �write� mode, while the

initial values of memory lo
ations are
he
ked in �all� mode.

-speed
he
k (no|some|all) Qui
k
ondition
he
k mode, default is �no�. In mode �some�, test exe
utable

will stop as soon as its
ondition is settled. In mode �all�, the run.sh s
ript will additionally not run

the test if invoked on
e more later.

26

The following optiondra
ommands a�nity
ontrol:

-affinity (none|in
r<n>|random|
ustom) Enable (of disable with tag none) a�nity
ontrol, spe
ifying

default a�nity mode of exe
utables. Default is none, i.e. exe
utables do not in
lude a�nity
ontrol

ode. The various tags are interpreted as follows:

1. in
r<n>: integer <n> is the in
rement for allo
ating logi
al pro
essors to threads � see Se
. 2.2.

Noti
e that with -affinity in
r0 the produ
ed
ode features a�nity
ontrol, whi
h exe
utable

�les do not exer
ise by default.

2. random: exe
utables perform random allo
ation of test threads to logi
al pro
essors.

3.
ustom: exe
utables perform
ustom allo
ation of test threads to logi
al pro
essors.

Noti
e that the default for exe
utables
an be overridden using options -i,+ra and +
a of Se
. 2.3.

-i <n> Alias for -affinity in
r<n>.

Noti
e that a�nity
ontrol is not implemented for Ma
Os.

The following options are signi�
ant when a�nity
ontrol is enabled. Otherwise they are silent no-ops.

-p <ns> Spe
ify the sequen
e of logi
al pro
essors. The notation <ns> stands for a
omma separated list of

integers. Set default value for option -p of Se
. 2.3. Default for this -p option will let exe
utable �les

ompute the logi
al pro
essor sequen
e themselves.

-for
e_afffinity <bool> Code that sets a�nity will spin until all spe
i�ed
ores (as given with option

-avail <n>) pro
essors are up. This option is ne
essary on devi
es that let
ore sleep when the

omputing load is low. Default is false.

Custom a�nity
ontrol (see Se
. 2.2.4) is enabled, �rst by enabling a�nity
ontrol (e.g. with -affinity

...), and then by spe
ifying a logi
al pro
essor topology with options -smt and -smt_mode.

-smt <n> Spe
ify that logi
al pro
essors are
lose by groups of n, default is 1.

-smt_mode (none|seq|end) Spe
ify how �
lose� logi
al pro
essors are numbered, default is none. In mode �end�,

logi
al pro
essors of the same
ore are numbered as c, c + Ac et
. where c is a physi
al
ore number

and Ac is the number of physi
al
ores available. In mode �seq�, logi
al pro
essors of the same
ore

are numbered in sequen
e.

Noti
e that
ustom a�nity works only for those tests that in
lude the proper meta-information. Otherwise,

ustom a�nity silently degrades to random a�nity.

Finally, a few mis
ellaneous options are do
umented:

-l <n> Insert the assembly
ode of ea
h thread in test in a loop of size <n>. A

epts generalised integer

syntax, disabled by default. Sets default value for option -l of Se
. 2.3.

This feature may prove useful for measuring running times that are not too mu
h perturbed by the

test harness, in
ombination with options -s 1 -r 1.

-vb <bool> Disable/enable the printing of syn
hronisation timings, default is false.

This feature may prove useful for analysing the syn
hronisation behaviour of a spe
i�
 test, see Se
. 3.1.

-

opts <flags> Set g

ompilation �ags (defaults: X86="-fomit-frame-pointer -O2", PPC/ARM="-O2").

-g

 <name> Change the name of C
ompiler, default g

.

-linkopt <flags> Set g

 linking �ags. (default: void).

-gas <bool> Emit Gnu as extensions (default Linux/Ma
=true, AIX=false)

27

Target ar
hite
ture des
ription Litmus
ompilation
hain may slightly vary depending on the following

parameters:

-os (linux|ma
|aix) Set target operating system. This parameter mostly impa
ts some of g

 options.

Default linux.

-ws (w32|w64) Set word size. This option �rst sele
ts g

 32 or 64 bits mode, by providing it with the

appropriate option (-m32 or -m64 on linux, -maix32 or -maix64 on AIX). It also slightly impa
ts
ode

generation in the
orner
ase where memory lo
ations hold other memory lo
ations. Default is a bit

ontrived: it a
ts as w32 as regards
ode generation, while it provides no 32/64 bits mode sele
tion

option to g

.

Change input Some items in the sour
e of tests
an be
hanged at the very last moment. The new

items are de�ned in mapping �les whose names are arguments to the appropriate
ommand line options.

Mapping �les simply are lists of pairs, with one line starting with a test name, and the rest of line de�ning

the
hanged item. The
hanged item may also
ontains several lines: in that
ase it should be in
luded in

double quotes �".�.

-names <file> Run litmus7 only on tests whose names are listed in <file>.

-rename <file> Change test names.

-kinds <file> Change test kinds. This amonts to
hanging the quanti�er of �nal
onditions, with kind

Allow being exists, kind Forbid being ~exists and kind Require being forall.

-
onds <file> Change the �nal
ondition of tests.

-hints <file> Change meta-data, or hints. Hints
ommand avan
ed features su
h as
ustom a�nity

(option -affinity
ustom and Se
. 2.2.4) and prefe
h
ontrol (option -preload
ustom and Se
. 3.2).

Observe that the rename mapping is applied �rst. As a result kind or
ondition
hange must refer to new

names. For instan
e, we
an highlight that a X86 ma
hine is not sequentially
onsistent by �rst renaming SB

into SB+SC, and then
hanging the �nal
ondition. The new
ondition expresses that the �rst instru
tion

(a store) of one of the threads must
ome �rst:

rename.txt
ond.txt

SB SB+SC

SB+SC "forall (0:EAX=1 \/ 1:EAX=1)"

Then, we run litmus:

% litmus7 -ma
h x86 -rename rename.txt -
onds
ond.txt SB.litmus

%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for SB.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%

X86 SB+SC

"Fre PodWR Fre PodWR"

{x=0; y=0;}

P0 | P1 ;

MOV [x℄,$1 | MOV [y℄,$1 ;

MOV EAX,[y℄ | MOV EAX,[x℄ ;

28

forall (0:EAX=1 \/ 1:EAX=1)

Generated assembler

#START _litmus_P1

movl $1,(%r8,%rdx)

movl (%rdx),%eax

#START _litmus_P0

movl $1,(%rdx)

movl (%r8,%rdx),%eax

Test SB+SC Required

Histogram (4 states)

39954 *>0:EAX=0; 1:EAX=0;

3979407:>0:EAX=1; 1:EAX=0;

3980444:>0:EAX=0; 1:EAX=1;

195 :>0:EAX=1; 1:EAX=1;

No

Witnesses

Positive: 7960046, Negative: 39954

Condition forall (0:EAX=1 \/ 1:EAX=1) is NOT validated

Hash=7dbd6b8e6dd4ab
2ef3d48b0376fb2e3

Observation SB+SC Sometimes 7960046 39954

Time SB+SC 0.48

One sees that the test name and �nal
ondition have
hanged.

Con�guration �les

The syntax of
on�guration �les is minimal: lines �key = arg� are interpreted as setting the value of param-

eter key to arg. Ea
h parameter has a
orresponding option, usually -key, ex
ept for single-letter options:

option key arg

-a avail integer

-s size_of_test integer

-r number_of_run integer

-p pro
s list of integers

-l loop integer

Noti
e that litmus7 in fa
t a

epts long versions of options (e.g. -avail for -a).

As
ommand line option are pro
essed left-to-right, settings from a
on�guration �le (option -ma
h)
an

be overridden by a later
ommand line option. Some
on�guration �les for the ma
hines we have tested are

present in the distribution. As an example here is the
on�guration �le hp
x.
fg.

size_of_test = 2000

number_of_run = 20000

os = AIX

ws = W32

A node has 16
ores X2 (SMT)

avail = 32

Lines introdu
ed by # are
omments and are thus ignored.

Con�guration �les are sear
hed �rst in the
urrent dire
tory; then in any dire
tory spe
i�ed by setting

the shell environment variable LITMUSDIR; and then in litmus installation dire
tory, whi
h is de�ned while

ompiling litmus7.

29

Part II

Generating tests

5 Preamble

We wrote diy7 as part of our empiri
al approa
h to studying relaxed memory models: developing in tan-

dem testing tools and models of multipro
essor behaviour. In this tutorial, we attempt an independent

tool presentation. Readers interested by the
ompanion formalism are invited to refer to our CAV 2010

publi
ation [1℄.

The distribution in
ludes additional test generators: diyone7 for generating one test and diy
ross7 for

generating simple variations on one test.

5.1 Relaxation of Sequential Consisten
y

Relaxation is one of the key
on
epts behind simple analysis of weak memory models. We de�ne a
andi-

date relaxation by referen
e to the most natural model of parallel exe
ution in shared memory: Sequential

Consisten
y (SC), as de�ned by L. Lamport [3℄. A parallel program running on a sequentially
onsistent

ma
hine behaves as an interleaving of its sequential threads.

Consider on
e more the example SB.litmus:

X86 SB

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y℄,$1 | MOV [x℄,$1 ; #(a)Wy1 | (
)Wx1

MOV EAX,[x℄ | MOV EAX,[y℄ ; #(b)Rx0 | (d)Ry0

exists (0:EAX=0 /\ 1:EAX=0)

To fo
us on intera
tion through shared memory, let us
onsider memory a

esses, or memory events. A

memory event will hold a dire
tion (write, written W, or read, written R), a memory lo
ation (written x, y)

a value and a unique label. In any run of the simple example above, four memory events o

ur: two writes

(c)Wx1 and (a)Wy1 and two reads (b)Rxv1 with a
ertain value v1 and (d)Ryv2 with a
ertain value v2.
If the program's behaviour is modelled by the interleaving of its events, the �rst event must be a write

of value 1 to lo
ation x or y and at least one of the loads must see a 1. Thus, a SC ma
hine would exhibit

only three possible out
omes for this test:

Allowed: 0:EAX = 0 ∧ 1:EAX = 1

Allowed: 0:EAX = 1 ∧ 1:EAX = 0

Allowed: 0:EAX = 1 ∧ 1:EAX = 1

However, running (see Se
. 1.1) this test on a x86 ma
hine yields an additional result:

Allowed: 0:EAX = 0 ∧ 1:EAX = 0

And indeed, x86 allows ea
h write-read pair on both pro
essors to be reordered [2℄: thus the write-read

pair in program order is relaxed on ea
h of these ar
hite
tures. We
annot use SC as an a

urate memory

model for modern ar
hite
tures. Instead we analyse memory models as relaxing the ordering
onstraints of

the SC memory model.

30

5.2 Introdu
tion to
andidate relaxations

Consider again our
lassi
al example, from a SC perspe
tive. We brie�y argued that the out
ome �0:EAX

= 0 ∧ 1:EAX = 0� is forbidden by SC. We now present a more
omplete reasoning:

• From the
ondition on out
ome, we get the values in read events: (b)Rx0 and (d)Ry0.

• Be
ause of these values, (b)Rx0 must pre
ede the write (c)Wx1 in the �nal interleaving of SC. Similarly,

(d)Ry0 must pre
ede the write (a)Wy1. This we note (b)
fr

→ (c) and (d)
fr

→ (a).

• Be
ause of sequential exe
ution order on one single pro
essor (a.k.a. program order), (a)Wy1 must

pre
ede (b)Rx0 (�rst pro
essor); while (c)Wx1 must pre
ede (d)Ry0 (se
ond pro
essor). This we note

(a)
po

→ (b) and (c)
po

→ (d).

• We synthesise the four
onstraints above as the following graph:

(a) Wy1

(b) Rx0

(
) Wx1

(d) Ry0

po rf

fr

porf

fr

rf

rf

Constraint arrows or global arrows are shown in brown
olour. As the graph
ontains a
y
le of brown

arrows, the events
annot be ordered. Hen
e the exe
ution presented is not allowed by SC.

The key idea of diy7 resides in produ
ing programs from similar
y
les. To that aim, the edges in
y
les

must
onvey additional information:

• For

po

→ edges, we
onsider whether the lo
ations of the events on both sides of the edge are the same

or not ('s' or 'd'); and the dire
tion of these events (W or R). For instan
e the two

po

→ edges in the

example are PodWR. (program order edge between a write and a read whose lo
ations are di�erent).

• For

fr

→ edges, we
onsider whether the pro
essor of the events on both sides of the edge are the same

or not ('i' for internal, or 'e' for external). For instan
e the two

fr

→ edges in the example are Fre.

So far so good, but our x86 ma
hine produ
ed the out
ome 0:EAX=0 ∧ 1:EAX=0. The Intel Memory

Ordering White Paper [2℄ spe
i�es: �Loads may be reordered with older stores to di�erent lo
ations�, whi
h

we rephrase as: PodWR is relaxed. Considering Fre to be safe, we have the graph:

31

(a)Wy1

(b)Rx0

(
)Wx1

(d)Ry0

PodWR Rf

Fre

PodWRRf

Fre

Rf

Rf

And the brown sub-graph be
omes a
y
li
.

We shall see later why we
hoose to relax PodWR and not Fre. At the moment, we observe that we
an

assume PodWR to be relaxed and Fre not to be (i.e. to be safe) and test our assumptions, by produ
ing

and running more litmus tests. The diy7 suite pre
isely provides tools for this approa
h.

As a �rst example, SB.litmus
an be
reated as follows:

% diyone7 -ar
h X86 -name SB Fre PodWR Fre PodWR

As a se
ond example, we
an produ
e several similar tests as follows:

% diy7 -ar
h X86 -safe Fre -relax PodWR -name SB

Generator produ
ed 2 tests

Relaxations tested: {PodWR}

diy7 produ
es two litmus tests, SB000.litmus and SB001.litmus, plus one index �le �all. One of the litmus

tests generated is the same as above, while the new test is:

%
at SB001.litmus

X86 SB001

"Fre PodWR Fre PodWR Fre PodWR"

Cy
le=Fre PodWR Fre PodWR Fre PodWR

Relax=PodWR

Safe=Fre

{ }

P0 | P1 | P2 ;

MOV [z℄,$1 | MOV [x℄,$1 | MOV [y℄,$1 ;

MOV EAX,[x℄ | MOV EAX,[y℄ | MOV EAX,[z℄ ;

exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0)

%
at �all

diy -ar
h X86 -safe Fre -relax PodWR -name SB

Revision: 3333

SB000.litmus

SB001.litmus

diy7 �rst generates
y
les from the
andidate relaxations given as arguments, up to a limited size, and

then generates litmus tests from these
y
les.

5.3 More
andidate relaxations

We assume the memory to be
oherent. Coheren
e implies that, in a given exe
ution, the writes to a given

lo
ation are performed by following a sequen
e, or
oheren
e order, and that all pro
essors see the same

sequen
e.

32

In diy7, the
oheren
e orders are spe
i�ed indire
tly. For instan
e, the
andidate relaxation Wse (resp.

Wsi) spe
i�es two writes, performed by di�erent pro
essors (resp. the same pro
essor), to the same lo
ation ℓ,
the �rst write pre
eding the se
ond in the
oheren
e order of ℓ. The
ondition of the produ
ed test then

sele
ts the spe
i�ed
oheren
e orders. Consider for instan
e:

% diyone7 -ar
h X86 -name x86-2+2W Wse PodWW Wse PodWW

The
y
le that reveals a violation of the SC memory model is:

(a) Wy2

(b) Wx1

(
) Wx2

(d) Wy1

PodWW rf

Wse

PodWWrf

Wse

So the
oheren
e order is 0 (initial store, not depi
ted), 1, 2 for both lo
ations x and y. While the produ
ed

test is:

X86 x86-2+2W

"Wse PodWW Wse PodWW"

Prefet
h=0:x=F,0:y=W,1:y=F,1:x=W

Com=Ws Ws

Orig=Wse PodWW Wse PodWW

{

}

P0 | P1 ;

MOV [x℄,$2 | MOV [y℄,$2 ;

MOV [y℄,$1 | MOV [x℄,$1 ;

exists

(x=2 /\ y=2)

By the
oheren
e hypothesis,
he
king the �nal value of lo
ations su�
es to
hara
terise those two
oheren
e

orders, as expressed by the �nal
ondition of x86-2+2W:

exists (x=2 /\ y=2)

See Se
. 9 for alternative means to identify
oheren
e orders.

Candidate relaxations Rfe and R� relate writes to reads that load their value. We are now equipped to

generate the famous iriw test (independent reads of independent writes):

% diyone7 -ar
h X86 Rfe PodRR Fre Rfe PodRR Fre -name iriw

We generate its internal variation (i.e. where all Rfe are repla
ed by R�) as easily:

% diyone7 -ar
h X86 Rfi PodRR Fre Rfi PodRR Fre -name iriw-internal

We get the
y
les of Fig. 1, and the litmus tests of Fig. 2.

Candidate relaxations given as arguments really are a �
on
ise spe
i�
ation�. As an example, we get iriw

for Power, simply by
hanging -ar
h X86 into -ar
h PPC.

33

Figure 1: Cy
les for iriw and iriw-internal

(a) Ry1

(b) Rx0

(
) Wx1

(d) Rx1

(e) Ry0

(f) Wy1

PodRR

Fre

Rferf

PodRR

Fre

Rfe

rf

rf

rf

(a) Wx1

(b) Rx1

(
) Ry0

(d) Wy1

(e) Ry1

(f) Rx0

R� rf

PodRR

Fre

R�rf

PodRR

Fre

rf

rf

Figure 2: Litmus tests iriw and iriw-internal

X86 iriw

"Rfe PodRR Fre Rfe PodRR Fre"

{ }

P0 | P1 | P2 | P3 ;

MOV EAX,[y℄ | MOV [x℄,$1 | MOV EAX,[x℄ | MOV [y℄,$1 ;

MOV EBX,[x℄ | | MOV EBX,[y℄ | ;

exists (0:EAX=1 /\ 0:EBX=0 /\ 2:EAX=1 /\ 2:EBX=0)

X86 iriw-internal

"Rfi PodRR Fre Rfi PodRR Fre"

{ }

P0 | P1 ;

MOV [x℄,$1 | MOV [y℄,$1 ;

MOV EAX,[x℄ | MOV EAX,[y℄ ;

MOV EBX,[y℄ | MOV EBX,[x℄ ;

exists

(0:EAX=1 /\ 0:EBX=0 /\

1:EAX=1 /\ 1:EBX=0)

34

% diyone7 -ar
h PPC Rfe PodRR Fre Rfe PodRR Fre

PPC A

"Rfe PodRR Fre Rfe PodRR Fre"

{

0:r2=y; 0:r4=x;

1:r2=x;

2:r2=x; 2:r4=y;

3:r2=y;

}

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwz r3,0(r4) | stw r1,0(r2) | lwz r3,0(r4) | stw r1,0(r2) ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0)

Also noti
e that without the -name option, diyone7 writes its result to standard output.

5.4 Summary of simple
andidate relaxations

We summarise the
andidate relaxations available on all ar
hite
tures.

5.4.1 Communi
ation
andidate relaxations

We
all
ommuni
ation
andidate relaxations the relations between two events
ommuni
ating through

memory, though they
ould belong to the same pro
essor. Thus, these events operate on the same memory

lo
ation.

diy7 syntax Sour
e Target Pro
essor Additional property

Rfi W R Same Target reads its value from sour
e

Rfe W R Di�erent Target reads its value from sour
e

Wsi W W Same Sour
e pre
edes target in
oheren
e order

Wse W W Di�erent Sour
e pre
edes target in
oheren
e order

Fri R W Same Sour
e reads a value from a write that pre-

edes target in
oheren
e order

Fre R W Di�erent Sour
e reads a value from a write that pre-

edes target in
oheren
e order

5.4.2 Program order
andidate relaxations

We
all program order
andidate relaxations ea
h relation between two events in the program order. These

events are on the same pro
essor, sin
e they are in program order. As regards
ode output, diy7 interprets

a program order
andidate relaxation by generating two memory instru
tions (load or store) following one

another.

Program order
andidate relaxations have the following syntax:

Po(s|d)(R|W)(R|W)

where:

• s (resp. d) indi
ates that the two events are to the same (resp. di�erent) lo
ation(s);

• R (resp. W) indi
ates an event to be a read (resp. a write);

In pra
ti
e, we have:

35

diy7syntax Sour
e Target Lo
ation

PosRR R R Same

PodRR R R Di�

PosRW R W Same

PodRW R W Di�

PosWW W W Same

PodWW W W Di�

PosWR W R Same

PodWR W R Di�

It is to be noti
ed that PosWR, PosWW and PosRW are similar to R�, Wsi and Fri, respe
tively. More

pre
isely, diy7 is unable to
onsider a PosWR (or PosWW, or PosRW)
andidate relaxation as not being also

a R� (or Wsi, or Fri)
andidate relaxation. However, litmus tests
onditions may be more informative in the

ase of R� and Fri.

5.4.3 Fen
e
andidate relaxations

Relaxed ar
hite
tures provide spe
i�
 instru
tions, namely barriers or fen
es, to enfor
e order of memory

a

esses. In diy7 the presen
e of a fen
e instru
tion is spe
i�ed with fen
e
andidate relaxations, similar to

program order
andidate relaxations, ex
ept that a fen
e instru
tion is inserted. Hen
e we have Fen
edsRR,

Fen
eddRR. et
. The inserted fen
e is the strongest fen
e provided by the ar
hite
ture � that is, mfen
e

for x86 and syn
 for Power.

Fen
es
an also be spe
i�ed by using spe
i�
 names. More pre
isely, we have MFen
e for x86; while on

Power we have Syn
, LwSyn
, Eieio and Isyn
. Hen
e, to yield two reads to di�erent lo
ations and separated

by the lightweight Power barrier lwsyn
, we spe
ify LwSyn
dRR. On ARM we have DMB, DSB and ISB.

6 Testing
andidate relaxations with diy7

The tool diy7
an probably be used in various,
reative, ways; but the tool �rst stems from our te
hnique for

testing relaxed memory models. The -safe and -relax options are
ru
ial here. We des
ribe our te
hnique

by the means of an example: X86-TSO.

6.1 Prin
iple

Before engaging in testing it is important to
ategorise
andidate relaxations as safe or relaxed.

This
an done by interpretation of vendor's do
umentation. For instan
e, the iriw test of Se
. 5.3 is the

example 7.7 of [2℄ �Stores Are Seen in a Consistent Order by Other Pro
essors�, with a Forbid spe
i�
ation.

Hen
e we dedu
e that Fre, Rfe and PodRR are safe. Then, from test iriw-internal of Se
. 5.3, whi
h is Intel's

test 7.5 �Intra-Pro
essor Forwarding Is Allowed� with an allow spe
i�
ation, we dedu
e that R� is relaxed.

Namely, the
y
le of iriw-internal is �Fre R� PodRR Fre R� PodRR�. Therefore, the only possibility is for

R� to be relaxed.

Overall, we dedu
e:

• Candidate relaxations PosWR (R�) and PodWR are relaxed

• The remaining
andidate relaxations PosRR, PodRR, PosWW (Wsi), PodWW, PosRW (Fri), Fre and

Wse are safe. Fen
e relaxations Fen
edsWR and Fen
eddWR are also safe and worth testing.

Of
ourse these remain assumptions to be tested. To do so, we perform one series of tests per relaxed

andidate relaxation, and one series of tests for
on�rming safe
andidate relaxations as mu
h as possible.

Let S be all safe
andidate relaxations.

36

• Let r be a relaxed
andidate relaxation. We produ
e tests for
on�rming r being relaxed by diy

-relax r -safe S. We run these tests with litmus7. If one of the tests yields Ok, then r is
on�rmed
to be relaxed, provided the experiments on S below do not fail.

• For
on�rming the safe set, we produ
e tests by diy -safe S. We run these tests as mu
h as possible

and expe
t never to see Ok.

Namely, diy7 builds
y
les as follows:

• diy -relax r -safe S build
y
les with at least one r taking other
andidate relaxations from S.

• diy -safe S build
y
les from the
andidate relaxations in S.

For the purpose of
on�rming relaxed
andidate relaxations, S
an be repla
ed by a subset.

6.2 Testing x86

Repeating
ommand line options is painful and error prone. Besides,
on�guration parameters may get lost.

Thus, we regroup those in
on�guration �les that simply list the options to be passed to diy7, one option

per line. For instan
e here is the
on�guration �le for testing the safe relaxations of x86, x86-safe.
onf.

#safe x86
onf file

-ar
h X86

#Generate tests on four pro
essors or less

-npro
s 4

#From
y
les of size at most six

-size 6

#With names safe000, safe0001,...

-name safe

#List of safe relaxations

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre Fen
esWR Fen
edWR

Observe that the syntax of
andidate relaxations allows one short
ut: the wild
ard * stands for W and R.

Thus PodR* gets expanded to the two
andidate relaxations PodRR and PodRW.

We get safe tests by issuing the following
ommand, preferably in a spe
i�
 dire
tory, say safe.

% diy7 -
onf x86-safe.
onf

Generator produ
ed 38 tests

Relaxations tested: {}

Here are the
on�guration �les for
on�rming that R� and PodWR are relaxed, x86-rfi.
onf and x86-podwr.
onf.

#rfi x86
onf file

-ar
h X86

-npro
s 4

-size 6

-name rfi

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre Fen
esWR Fen
edWR

-relax Rfi

#podrw x86
onf file

-ar
h X86

-npro
s 4

-size 6

-name podwr

-safe Fre

-relax PodWR

Noti
e that we used the
omplete safe list in x86-rfi.
onf and a redu
ed list in x86-podwr.
onf. Tests

are to be generated in spe
i�
 dire
tories.

37

%
d rfi

% diy7 -
onf x86-rfi.
onf

Generator produ
ed 11 tests

Relaxations tested: {Rfi}

%
d ../podwr

% diy7 -
onf x86-podwr.
onf

Generator produ
ed 2 tests

Relaxations tested: {PodWR}

%
d ..

Now, let us run all tests at on
e, with the parameters of ma
hine saumur (4 physi
al
ores with hyper-

threading):

% litmus7 -ma
h saumur rfi/�all > rfi/saumur.rfi.00

% litmus7 -ma
h saumur podwr/�all > podwr/saumur.podwr.00

% litmus7 -ma
h saumur safe/�all > safe/saumur.safe.00

If your ma
hine has 2
ores only, try litmus -a 2 -limit true. . .

We now look for the tests that have validated their
ondition in the result �les of litmus7. A simple tool,

readRelax7, does the job:

% readRelax7 rfi/saumur.rfi.00 podwr/saumur.podwr.00 safe/saumur.safe.00

.

.

.

** Relaxation summary **

{Rfi} With {Rfe, Fre, Wse, PodRW, PodRR} {Rfe, Fre, PodRR}\

{Fre, Wse, PodWW, PodRR} {Fre, PosWW, PodRR, MFen
edWR}\

{Fre, PodWW, PodRR, MFen
edWR} {Fre, PodRR} {Fre, PodRR, MFen
edWR}

{PodWR} With {Fre}

The tool readRelax7 �rst lists the result of all tests (whi
h is omitted above), and then dumps a summary of

the relaxations it found. The sets of the
andidate relaxations that need to be safe for the tests to indeed

reveal a relaxed
andidate relaxation are also given. Here, R� and PodWR are
on�rmed to be relaxed, while

no
andidate relaxation in the safe set is found to be relaxed. Had it been the
ase, a line {} With {...}

would have o

urred in the relaxation summary. The safe tests need to be run a lot of times, to in
rease our

on�den
e in the safe set.

7 Additional relaxations

We introdu
e some additional
andidate relaxations that are spe
i�
 to the Power ar
hite
ture. We shall not

detail here our experiments on Power ma
hines. See our experien
e report http://diy.inria.fr/phat/ for

more details.

7.1 Intra-pro
essor dependen
ies

In a very relaxed ar
hite
ture su
h as Power, intra-pro
essor dependen
ies be
omes signi�
ant. Roughly,

intra-pro
essor dependen
ies fall into two
ategories:

Data dependen
ies o

ur when a memory a

ess instru
tion reads a register whose
ontents depends upon

a previous (in program order) load. In diy7 we spe
ify su
h a dependen
y as:

Dp(s|d)(R|W)

38

where, as usual, s (resp. d) indi
ates that the sour
e and target events are to the same (resp. di�erent)

lo
ation(s); and R (resp. W) indi
ates that the target event is a read (resp. a write). As a matter of

fa
t, we do not need to spe
ify the dire
tion of the sour
e event, sin
e it always is a read.

Finally, one may
ontrol the nature of the dependen
y: address dependen
y (DpAddr(s|d)(R|W) or

data dependen
y (DpData(s|d)W).

Control dependen
ies o

ur when the exe
ution of a memory a

ess is
onditioned by the
ontents of a

previous load. Their syntax is similar to the one of Dp relaxations, with a Ctrl tag:

Ctrl(s|d)(R|W)

This default syntax expands to
ontrol dependen
ies as guaranteed by the Power do
umentation. For

read to write,
onditioning exe
ution is enough (expanded syntax, DpCtrl(s|d)W). But for read to

read, an extra instru
tion, isyn
, is needed (expanded syntax DpCtrlIsyn
(s|d)R, see below). The

syntax DpCtrl(s|d)R also exists, it expresses the
onditional exe
ution of a load instru
tion and does

not
reate ordering.

ARM has similar
andidate relaxations, Isyn
 being repla
ed by ISB.

In the produ
ed
ode, diy7 expresses a data dependen
y by a false dependen
y (or dummy dependen
y) that

operates on the address of the target memory a

ess. For instan
e:

% diyone7 DpdW Rfe DpdW Rfe

PPC A

"DpAddrdW Rfe DpAddrdW Rfe"

{

0:r2=y; 0:r5=x;

1:r2=x; 1:r5=y;

}

P0 | P1 ;

lwz r1,0(r2) | lwz r1,0(r2) ;

xor r3,r1,r1 | xor r3,r1,r1 ;

li r4,1 | li r4,1 ;

stwx r4,r3,r5 | stwx r4,r3,r5 ;

exists (0:r1=1 /\ 1:r1=1)

On P0, the e�e
tive address of the indexed store stwx r4,r3,r5 depends on the
ontents of the index

register r3, whi
h itself depends on the
ontents of r1. The dependen
y is a �false� one, sin
e the
ontents

of r3 always is zero, regardless of the
ontents of r1. One may observe that DpdW is
hanged into DpAddrdW

in the
omment �eld of the test. As a matter of fa
t, DpdW is a ma
ro for the address dependen
y DpAddrW.

We
ould have spe
i�ed data dependen
y instead:

% diyone7 DpDatadW Rfe DpAddrdW Rfe

PPC A

"DpDatadW Rfe DpAddrdW Rfe"

{

0:r2=y; 0:r4=x;

1:r2=x; 1:r5=y;

}

P0 | P1 ;

lwz r1,0(r2) | lwz r1,0(r2) ;

xor r3,r1,r1 | xor r3,r1,r1 ;

addi r3,r3,1 | li r4,1 ;

stw r3,0(r4) | stwx r4,r3,r5 ;

39

exists

(0:r1=1 /\ 1:r1=1)

On P0, the value stored by the last (store) instru
tion stw r3,0(r4) is now
omputed from the value read

by the �rst (load) instru
tion lwz r1,0(r2). Again, this is a �false� dependen
y.

A
ontrol dependen
y is implemented by the means of an useless
ompare and bran
h sequen
e, plus the

isyn
 instru
tion when the target event is a load. For instan
e

% diyone7 CtrldR Fre Syn
dWW Rfe

PPC A

"DpCtrlIsyn
dR Fre Syn
dWW Rfe"

{

0:r2=y; 0:r4=x;

1:r2=x; 1:r4=y;

}

P0 | P1 ;

lwz r1,0(r2) | li r1,1 ;

mpw r1,r1 | stw r1,0(r2) ;

beq LC00 | syn
 ;

LC00: | li r3,1 ;

isyn
 | stw r3,0(r4) ;

lwz r3,0(r4) | ;

exists

(0:r1=1 /\ 0:r3=0)

Also noti
e that CtrldR is interpreted as DpCtrlIsyn
R in the
omment �eld of the test.

Of
ourse, in all
ases, we assume that �false� dependen
ies are not �optimised out� by the assembler or

the hardware.

7.2 Composite relaxations and
umulativity

Users may spe
ify a small sequen
e of single
andidate relaxations as behaving as a single
andidate relaxation

to diy7. The syntax is:

[r1, r2, . . . ℄

The main usage of the feature is to spe
ify
umulativity
andidate relaxations, that is, the sequen
e of Rfe

and of a fen
e
andidate relaxation (A-
umulativity), the sequen
e of a fen
e
andidate relaxation and of Rfe

(B-
umulativity), or both (AB-
umulativity).

Cumulativity
andidate relaxations are best expressed by the following synta
ti
al short
uts: let r be

a fen
e
andidate relaxation, then ACr stands for [Rfe,r℄, BCr stands for [r,Rfe℄, while ABCr stands

for [Rfe,r,Rfe℄,
Hen
e, a simple way to generate iriw-like (see Se
. 5.3) litmus tests with lwsyn
 is as follows:

% diy7 -name iriw-lwsyn
 -npro
s 8 -size 8 -relax ACLwSyn
dRR -safe Fre

Generator produ
ed 3 tests

Relaxations tested: {ACLwSyn
dRR}

where we have for instan
e:

%
at iriw-lwsyn
001.litmus

PPC iriw-lwsyn
001

"Fre Rfe LwSyn
dRR Fre Rfe LwSyn
dRR Fre Rfe LwSyn
dRR"

Cy
le=Fre Rfe LwSyn
dRR Fre Rfe LwSyn
dRR Fre Rfe LwSyn
dRR

Relax=ACLwSyn
dRR

40

Safe=Fre

{

0:r2=z; 0:r4=x; 1:r2=x;

2:r2=x; 2:r4=y; 3:r2=y;

4:r2=y; 4:r4=z; 5:r2=z;

}

P0 | P1 | P2 | P3 | P4 | P5 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwsyn
 | stw r1,0(r2) | lwsyn
 | stw r1,0(r2) | lwsyn
 | stw r1,0(r2) ;

lwz r3,0(r4) | | lwz r3,0(r4) | | lwz r3,0(r4) | ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0 /\ 4:r1=1 /\ 4:r3=0)

7.3 Detour
andidate relaxations

Detours
ombine a Pos
andidate relaxation and a sequen
e of two external
ommuni
ation
andidate relax-

ations. More pre
isely detours are some
onstrained Pos
andidate relaxations: the sour
e and target events

must be related by a sequen
e of two
ommuni
ation
andidate relaxations, whose target and sour
e are a

ommon event whose pro
essor is new.

diy7 syntax Sour
e Target Detour

DetourR R R Fre; Rfe

DetourW W R Wse; Rfe

DetourRW R W Fre;Wse

DetourWW W W Wse;Wse

DetourRR and DetourWR are a

epted as synonyms for DetourR and DetourW respe
tively.

Graphi
ally, we have:

DetourR

a: Rx=0

b: Rx=1

: Wx=1

po

fr

rf

DetourW

a: Wx=1

b: Rx=2

: Wx=2

po

o

rf

DetourRW

a: Rx=0

b: Wx=2

: Wx=1

po

fr

o

DetourWW

a: Wx=1

b: Wx=3

: Wx=2

po

o

o

Finally noti
e that �internal� detours need no spe
ial treatement as they
an be expressed by the sequen
es

�Fri; R��, �Wsi;R��, et
.

41

8 Test variations with diy
ross7

The tool diy
ross7 has an interfa
e similar to diyone7, ex
ept it a

epts list of
andidate relaxations where

diyone7 a

epts single
andidate relaxations. The new tool produ
es the test resulting by �
ross produ
ing�

the lists. For instan
e, one
an generate all variations on the IRIW test (see Se
. 5.3) that involve data

dependen
ies and the lightweight barrier lwsyn
 as follows:

% diy
ross7 -ar
h PPC -name IRIW Rfe DpdR,LwSyn
dRR Fre Rfe DpdR,LwSyn
dRR Fre

Generator produ
ed 3 tests

% ls

�all IRIW+addrs.litmus IRIW+lwsyn
+addr.litmus IRIW+lwsyn
s.litmus

diy
ross7 outputs the index �le �all that lists the test sour
e �les, and three tests, with names we believe

to be self-explanatory:

%
at IRIW+lwsyn
+addr.litmus

PPC IRIW+lwsyn
+addr

"Rfe LwSyn
dRR Fre Rfe DpAddrdR Fre"

Cy
le=Rfe LwSyn
dRR Fre Rfe DpAddrdR Fre

{

0:r2=y;

1:r2=y; 1:r4=x;

2:r2=x;

3:r2=x; 3:r5=y;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) ;

stw r1,0(r2) | lwsyn
 | stw r1,0(r2) | xor r3,r1,r1 ;

| lwz r3,0(r4) | | lwzx r4,r3,r5 ;

exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r4=0)

Users may use the spe
ial keywords allRR, allRW, allWR and allWW to spe
ify the set of all existing

program order
andidate relaxations between the spe
i�ed �R� or �W�. For instan
e, we get the
omplete

variations on IRIW by:

% diy
ross7 -ar
h PPC -name IRIW Rfe allRR Fre Rfe allRR Fre

Generator produ
ed 28 tests

% ls

�all

IRIW.litmus

IRIW+addr+po.litmus

IRIW+lwsyn
+addr.litmus

...

IRIW+isyn
s.litmus

9 Identifying
oheren
e orders with observers

We �rst produ
e the �four writes� test 2+2W for Power:

% diyone7 -name 2+2W -ar
h PPC PodWW Wse PodWW Wse

%
at 2+2W.litmus

PPC 2+2W

"PodWW Wse PodWW Wse"

42

{ 0:r2=x; 0:r4=y; 1:r2=y; 1:r4=x; }

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

exists (x=2 /\ y=2)

Test 2+2W is the Power version of the x86 test x86-2+2W of Se
. 5.3. In that se
tion, we argued that the

�nal
ondition exists (x=2 /\ y=2) su�
es to identify the
oheren
e orders 0, 1, 2 for lo
ations x and y.

As a
onsequen
e, a positive �nal
ondition reveals the o

urren
e of the spe
i�ed
y
le: Wse PodWW Wse

PodWW.

9.1 Simple observers

Observers provide an alternative, perhaps more intuitive, means to identify
oheren
e orders: an observer

simply is an additional thread that performs several loads from the same lo
ation in sequen
e. Here, loading

value 1 and then value 2 from lo
ation x identi�es the
oheren
e order 0, 1, 2. The
ommand line swit
h

-obs for
e
ommands the produ
tion of observers (test 2+2WObs):

% diyone7 -name 2+2WObs -obs for
e -obstype straight -ar
h PPC PodWW Wse PodWW Wse

%
at 2+2WObs.litmus

PPC 2+2WObs

"PodWW Wse PodWW Wse"

{ 0:r2=x; 1:r2=y; 2:r2=x; 2:r4=y; 3:r2=y; 3:r4=x; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | lwz r1,0(r2) | li r1,2 | li r1,2 ;

lwz r3,0(r2) | lwz r3,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

| | li r3,1 | li r3,1 ;

| | stw r3,0(r4) | stw r3,0(r4) ;

exists (0:r1=1 /\ 0:r3=2 /\ 1:r1=1 /\ 1:r3=2)

Thread P0 observes lo
ation x, while thread P1 observes lo
ation y. With respe
t to 2+2W, �nal
ondition

has
hanged, the dire
t observation of the �nal
ontents of lo
ations x and y being repla
ed by two su

essive

observations of the
ontents of x and y.

It should �rst be noti
ed that the reasoning above assumes that having the same thread to read 1 from

say x and then 2 implies that 1 takes pla
e before 2 in the
oheren
e order of x. This may not be the
ase

in general � although it holds for Power. Moreover, running 2+2W and 2+2WObs yields
ontrasted results.

While a positive
on
lusion is immediate for 2+2W, we were not able to rea
h a similar
on
lusion for 2+2WObs.

As a matter of fa
t, 2+2WObs yielding Ok stems from the still-to-be-observed
oin
iden
e of several events:

both observers threads must run at the right pa
e to observe the
hange from 1 to 2, while the
y
le must
indeed o

ur.

9.2 More observers

9.2.1 Fen
es and loops in observers

A simple observer
onsisting of loads performed in sequen
e is a straight observer. We de�ne two additional

sorts of observers: fen
ed observers, where loads are separated by the strongest fen
e available, and loop

observers, whi
h poll on lo
ation
ontents
hange. Those are sele
ted by the homonymous tags given as

arguments to the
ommand line swit
h -obstype. For instan
e, we get the test 2+2WObsFen
ed by:

% diyone7 -name 2+2WObsFen
ed -obs for
e -obstype fen
ed -ar
h PPC PodWW Wse PodWW Wse

%
at 2+2WObsFen
ed.litmus

43

PPC 2+2WObsFen
ed

"PodWW Wse PodWW Wse"

{ 0:r2=x; 1:r2=y; 2:r2=x; 2:r4=y; 3:r2=y; 3:r4=x; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | lwz r1,0(r2) | li r1,2 | li r1,2 ;

syn
 | syn
 | stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) | li r3,1 | li r3,1 ;

| | stw r3,0(r4) | stw r3,0(r4) ;

exists (0:r1=1 /\ 0:r3=2 /\ 1:r1=1 /\ 1:r3=2)

Invoking diyone7 as �diyone -obs for
e -obstype loop ...� yields the additional test 2+2WObsLoop. The

html version of this do
ument provides details.

9.2.2 Lo
al observers

With lo
al observers,
oheren
e order is observed by the test threads. This implies
hanging the tests, and

some
are must be exer
ised when interpreting results.

The idea is as follows: when two threads are
onne
ted by a Wse
andidate relaxation, meaning that the

�rst thread ends by writing v to some lo
ation ℓ and that the se
ond threads starts by writing v + 1 to the
same lo
ation ℓ, we add an observing read of lo
ation ℓ at the end of the �rst thread. Then, reading v + 1
means that the write by the �rst thread pre
edes the write by the se
ond thread in ℓ
oheren
e order. More

on
retely, we instru
t diy7 generators to emit su
h lo
al observers with option -obs lo
al:

% diyone7 -name 2+2WLo
al -obs lo
al -obstype straight -ar
h PPC PodWW Wse PodWW Wse

%
at 2+2WLo
al.litmus

PPC 2+2WLo
al

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

lwz r5,0(r4) | lwz r5,0(r4) ;

exists

(0:r5=2 /\ 1:r5=2)

With respe
t to 2+2W, �nal
ondition has
hanged, the dire
t observation of the �nal
ontents of lo
ations y

and x being repla
ed lo
al observation of y by thread 0 and lo
al observation of x by thread 1.

Based for instan
e on the test exe
ution witness, whose only SC-violation
y
le is the same as as for

2+2W,

44

a: W[x℄=2

b: W[y℄=1

f: R[x℄=2

: R[y℄=2

d: W[y℄=2

e: W[x℄=1

po:0

rf

rf

po:0

ws

rf po:1rf

ws

po:1

one may argue that tests 2+2W and 2+2WLo
al are equivalent, in the sense that both are allowed or both

are forbidden by a model or ma
hine.

Lo
al observers
an also be fen
ed or looping. For instan
e, one produ
es 2+2WLo
alFen
ed, the fen
ed

lo
al observer version of 2+2W as follows:

% diyone7 -name 2+2WLo
alFen
ed -obs lo
al -obstype fen
ed -ar
h PPC PodWW Wse PodWW Wse

%
at 2+2WLo
alFen
ed.litmus

PPC 2+2WLo
alFen
ed

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

syn
 | syn
 ;

lwz r5,0(r4) | lwz r5,0(r4) ;

exists

(0:r5=2 /\ 1:r5=2)

While one produ
es 2+2WLo
alLoop, the looping lo
al observer version of 2+2W as follows:

% diyone7 -name 2+2WLo
alLoop -obs lo
al -obstype loop -ar
h PPC PodWW Wse PodWW Wse

%
at 2+2WLo
alLoop.litmus

PPC 2+2WLo
alLoop

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

li r6,200 | li r6,200 ;

L00: | L02: ;

45

lwz r5,0(r4) | lwz r5,0(r4) ;

mpwi r5,1 |
mpwi r5,1 ;

bne L01 | bne L03 ;

addi r6,r6,-1 | addi r6,r6,-1 ;

mpwi r6,0 |
mpwi r6,0 ;

bne L00 | bne L02 ;

L01: | L03: ;

exists (0:r5=2 /\ 1:r5=2)

In the
ode above, observing loads are attempted at most 200 time or until a value di�erent from 1 is read.

9.2.3 Performan
e of observers

As an indi
ation of the performan
e of the various sorts of observers, the following table summarises a litmus7

experiment performed on a 8-
ores 4-ways SMT Power7 ma
hine ma
hine.

2+2W 2+2WObs 2+2WObsFen
ed 2+2WObsLoop 2+2WLo
al 2+2WLo
alFen
ed 2+2WLo
alLoop

Positive 2.2M/160M 0/80M 326/80M 25k/80M 2/160M 34k/160M 111k/160M

The row �Positive� shows the number of observed positive out
omes/total number of out
omes produ
ed.

For instan
e, in the
ase of 2+2W, we observed the positive out
ome x=2 /\ y=2 more than 2 millions

times out of a total of 160 millions out
omes. As a
on
lusion, all te
hniques a
hieve de
ent results, ex
ept

straight observers.

9.3 Three stores or more

In test 2+2W the
oheren
e orders sequen
e two writes. If there are three writes or more to the same

lo
ation, it is no longer possible to identify a
oheren
e order by observing the �nal
ontents of the memory

lo
ation involved. In other words, observers are mandatory.

The argument to the -obs swit
h
ommands the produ
tion of observers. It
an take four values:

a

ept Produ
e observers when absolutely needed. More pre
isely, given memory lo
ation x, no equality

on x appears in the �nal
ondition for zero or one write to x, one su
h appears for two writes, and

observers are produ
ed for three writes or more.

avoid Never produ
e observers, i.e. fail when there are three writes to the same lo
ation.

for
e Produ
e observers for two writes or more.

lo
al Always produ
e lo
al observers.

With diyone7, one easily build a three writes test as for instan
e the following W5:

% diyone7 -obs a

ept -obstype fen
ed -ar
h PPC -name W5 Wse Wse PodWW Wse PodWW

%
at W5.litmus

PPC W5

"Wse Wse PodWW Wse PodWW"

{ 0:r2=y; 1:r2=y; 1:r4=x; 2:r2=x; 2:r4=y; 3:r2=y; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,3 | li r1,2 | li r1,2 ;

syn
 | stw r1,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | li r3,1 | li r3,1 | ;

syn
 | stw r3,0(r4) | stw r3,0(r4) | ;

lwz r4,0(r2) | | | ;

exists (x=2 /\ 0:r1=1 /\ 0:r3=2 /\ 0:r4=3)

46

As apparent from the
ode above, we have a fen
ed observer thread on y (P0), while the �nal state of x is

observed dire
tly (x=2). The
ommand line swit
h -obs for
e would yield two observers, while -obs avoid

would lead to failure.

With
ommand line swit
h -obs lo
al we get three lo
al observations of
oheren
e, whi
h su�
e to

re
onstru
t the
omplete
oheren
e orders:

% diyone7 -obs lo
al -obstype fen
ed -ar
h PPC -name W5Lo
al Wse Wse PodWW Wse PodWW

hi%
at W5Lo
al.litmus

PPC W5Lo
al

"Wse Wse PodWW Wse PodWW"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

2:r2=x;

}

P0 | P1 | P2 ;

li r1,3 | li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 | syn
 ;

stw r3,0(r4) | stw r3,0(r4) | lwz r3,0(r2) ;

syn
 | syn
 | ;

lwz r5,0(r4) | lwz r5,0(r4) | ;

exists (0:r5=2 /\ 1:r5=2 /\ 2:r3=3)

10 Command usage

The diy7 suite
onsists in four main tools:

diyone7 generates one litmus test from the spe
i�
ation of a violation of the sequential
onsisten
y memory

model as a
y
le � see Se
. 5.2.

diy
ross7 generates variations of diyone7 style tests � see Se
. 8.

diy7 generates several tests, aimed at
on�rming that
andidate relaxations are relaxed or safe�see Se
. 6.

readRelax7 Extra
t relevant information from the results of tests�see Se
. 6.2.

10.1 A note on test names

We have designed a simple naming s
heme for tests. A normalised test name de
omposes �rst as a family

name, and se
ond as a des
ription of program-order (or internal)
andidate relaxations.

10.1.1 Family names

Cy
les (and thus tests) are �rst grouped by families. Family names des
ribe test stru
ture, based upon exter-

nal
ommuni
ation
andidates relaxations. More spe
i�
ally, external
ommuni
ation
andidates relaxations

su�
e to settle the dire
tions (W or R) of �rst and last events of threads,
onsidering the
ase when those two

events are the same. For instan
e,
onsider the
y
le �PodWW Rfe PodRR Fre�: there are two threads in

the
orresponding test (as there are two external
ommuni
ation
andidate relaxations), one thread starts

and ends with a write (written WW), while the other thread starts and ends with a read (written RR). The

family name is thus WW+RR, (or RR+WW, but we
hoose the former). For referen
e, a normalised family name is

the minimal amongst the representations of a given
y
le, following the lexi
al order derived from the order

W < WW < RR < RW < WR < R.

47

The most
ommon families have ni
knames, whi
h are de�ned by this do
ument

4

. For instan
e,
onsider

the test whose
y
le is �PodWR Fre PodWR Fre�. The family name is WR+WR, as this is a two-thread test,

both threads starting with a write and ending with a read. The ni
kname for this family is, as we already

know, SB (store-bu�ering). Here is the list of ni
knames and family names for two thread tests:

2+2W WW+WW PodWW Wse PodWW Wse

LB RW+RW PodRW Rfe PodRW Rfe

MP WW+RR PodWW Rfe PodRR Fre

R WW+WR PodWW Wse PodWR Fre

S WW+RW PodWW Rfe PodRW Wse

SB WR+WR PodWR Fre PodWR Fre

Isolated writes (and reads) originate from the
ombinations of
ommuni
ation relaxations, for instan
e

[Fre,Rfe℄. They appear as �W� (and R) in family names. For instan
e, �Rfe PodRR Fre Rfe PodRR Fre�

ontains two su
h isolated writes, its name is thus W+RR+W+RR and its ni
kname is, as we know, IRIW

(Independent reads of independent writes). The test �Rfe PodRW Rfe PodRR Fre�
ontains one isolated

write, as apparent from this diagram:

WRC

a: Wx=1 b: Rx=1

: Wy=1

d: Ry=1

e: Rx=0

rf

po

rf

po

fr

rf

The family name is thus W+RW+RR and the ni
kname is WRC (Write to Read Causality).

10.1.2 Des
riptive names for variants

Every family has a prototype, homonymous test where every thread
ode
onsists in one (for W or R) or

two memory a

esses to di�erent lo
ations (for WW, WR et
.). For instan
e, the MP test is derived from the

y
le �PodWW Rfe PodRR Fre�. Variants are des
ribed by tags that illustrates the various program-order

relaxations: they appear after the family name, still with �+� as a separation. For instan
e the test derived

from �LwSyn
dWW Rfe DpAddrdR Fre� is named MP+lwsyn
+addr.

When all threads have the same tag tag, the test name is abbreviated as Family+tags. For instan
e,

the test MP+lwsyn
+lwsyn
 (�LwSyn
dWW Rfe LwSyn
dRR Fre�) is in fa
t MP+lwsyn
s. Additionally,

the tag pos (all po's) is omitted, in order to yield family names for the prototype tests �
f. MP whose

name would have been MP+pos otherwise.

For the sake of terseness, tags do not des
ribe program-order relaxations
ompletely. For instan
e both

DpAddrdR and DpAddrdW (address dependen
y to read and write, respe
tively) have the same tag, addr.

It does not harm for simple tests, as the missing dire
tion
an be inferred from the family name. Consider

for instan
e MP+lwsyn
+addr and LB+lwsyn
+addr.

4

http://www.
l.
am.a
.uk/~pes20/pp
-supplemental/test6.pdf

48

MP+lwsyn
+addr

a: Wx=1

b: Wy=1

: Ry=1

d: Rx=0

lwsyn

rf

fr

addr

rf

LB+lwsyn
+addr

a: Rx=1

b: Wy=1

: Ry=1

d: Wx=1

lwsyn

rf

rf

addr

The naming s
heme extends to
y
les with
onse
utive program-order relaxations, by separating tags

with �-� when they follow one another: for instan
e �LwSyn
dWW Rfe DpAddrdR PodRR Fre� is named

MP+lwsyn
+addr-po. Unfortunately, the
urrent naming s
heme falls short in supplying non-ambiguous

names to all tests. For instan
e, �LwSyn
dWWRfe DpAddrdW PodWR Fre� is also namedMP+lwsyn
+addr-

po. In that situation tools will either fail or silently add a numeri
 su�x, depending on the boolean -addnum

option.

% diy
ross7 -addnum false LwSyn
dWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Fatal error: Dupli
ate name MP+lwsyn
+addr-po

% diy
ross7 -addnum true LwSyn
dWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Generator produ
ed 2 tests

%
at �all

diy
ross7 -addnum true LwSyn
dWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

MP+lwsyn
+addr-po.litmus

MP+lwsyn
+addr-po001.litmus

As a result, we get the two tests: MP+lwsyn
+addr-po and MP+lwsyn
+addr-po001.

MP+lwsyn
+addr-po

a: Wx=1

b: Wy=1

: Ry=1

d: Rz=0

e: Rx=0

lwsyn

rf

addr

po

fr

rf

rf

MP+lwsyn
+addr-po001

a: Wx=1

b: Wy=1

: Ry=1

d: Wz=1

e: Rx=0

lwsyn

rf

addr

po

fr

rf

Future versions of diy7 may solve this issue in a more satisfying manner. At the moment, users are

advised not to rely too mu
h on the automati
 naming s
heme. Users may name tests in a non-ambiguous

fashion by (1) spe
ifying an expli
it family name (-name name) and (2) sele
ting the numeri
 s
heme (-num

true):

% diy
ross7 -name MP+X -num true LwSyn
dWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Generator produ
ed 2 tests

The diy
ross7 generator outputs the same tests as above, with names MP+X000 and MP+X001.

10.2 Common options

All test generators a

ept the following do
umented
ommand-line options:

-v Be verbose, repeat to in
rease verbosity.

-version Show version number and exit.

49

-ar
h (X86|PPC|ARM) Set ar
hite
ture. Default is PPC. ARM support is experimental.

-o <dest> Redire
t output to <dest>. This option applies when tools generate a set of tests and an index

�le �all, .i.e. in all situations ex
ept for diyone7 simplest operating mode.

If argument <dest> is an ar
hive (extension .tar) or a
ompressed ar
hive (extension .tgz), the tool

builds an ar
hive. Otherwise, <dest> is interpreted as the name of an existing dire
tory. Default is

�.�, that is tool output goes into the
urrent dire
tory.

-obs (a

ept|avoid|for
e|lo
al) Management of observers, default is avoid. See Se
. 9.3.

-obstype (fen
ed|loop|straight) Style of observers, default is fen
ed. See Se
. 9.2.

-
ond (
y
le|uni|observe) Control �nal
ondition of tests, default is
y
le. In mode
y
le, the �nal

ondition identi�es exe
utions that
orrespond to the generating
y
le. In mode uni
ond, the �nal

ondition identi�es exe
utions that are valid w.r.t. the unipro
 model (see Se
. 12.2). In mode observe

there is no �nal
ondition: the litmus7 and herd7 tools will simply list the �nal values of lo
ations.

-opt
ond Optimise
onditions by disregarding the values of loads that are neither the target of Rf, nor the

sour
e of Fr. This is the default.

-noopt
ond Do not optimise
onditions.

-opt
oheren
e Optimise
onditions assuming that the tested system (at least) follows the unipro
 model

(see Se
. 12.2).

-noopt
oheren
e Do not optimise
onditions assuming that the tested system (at least) follows the unipro

model. This is the default.

-neg <bool> Negate �nal
ondition, default is false.

-
 <bool> Avoid equivalent
y
les. Default is true. Setting -
 true is intended for debug.

The naming of tests is
ontrolled by the following options:

-name <name> Use name for naming tests, the exa
t
onsequen
es depend on the generator. By default the

generator has no name available.

-num <bool> Use numeri
 names, i.e. from a base name <base> the generator will name tests as <base>000,

<base>001 et
. The default depends upon the generator.

-addnum <bool> If true, when fa
ed with tests whose name <name> has already been given, use names

<name>001, <name>002, et
. Otherwise fail in the same situation. The default depends upon the

generator.

-fmt <n> Size of numeri
al su�xes, default is 3.

10.3 Usage of diyone7

The tool diyone7 has two operating modes. The sele
ted mode depends on the presen
e of
ommand-line

arguments,

In the �rst operating mode, diyone7 takes a non-empty list of
andidate relaxations as arguments and

outputs a litmus test. Note that diyone7 may fail to produ
e the test, with a message that brie�y details the

failure.

% diyone7 Rfe Rfe PodRR

Test a [Rfe Rfe PodRR℄ failed:

Impossible dire
tion PodRR Rfe

50

In this mode, -name <name> sets the name of the test to <name> and output it into �le <name>.litmus.

If absent, the test name is A and output goes to standard output.

Otherwise, i.e. when there are no
ommand-line arguments, diyone7 reads the standard input and

generates the tests des
ribed by the lines it reads. Ea
h line starts with a test name name, followed by �:�,

followed by a list of
andidate relaxationsRS. Then, diyone7 a
ts as if invoked as diyone opts -name name RS.

The tool diyone7 a

epts the following do
umented option:

-norm Normalise tests and give them normalised names. In the �rst operating mode (when a
y
le is

expli
itly given) the test will be named with a family name and a des
riptive name. In the se
ond

operating mode, numeri
 names are used, base being either given expli
itly (with option -name <base>)

or being a normalised family name.

10.4 Usage of diy
ross7

diy
ross7 produ
es several tests by �
ross produ
ing� lists of
andidate relaxations given as arguments, see

Se
 8. diy
ross7 also produ
es an index �le �all that lists all produ
ed litmus sour
e �les.

If option -name <name> is given, it sets the family name of generated tests, otherwise standard family

names are used (
f. Se
. 10.1). By default des
riptive names are used (i.e. -num false) and diy
ross7 will

fail if two di�erent tests have the same name (i.e. -addnum false):

% diy
ross7 PodWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Fatal error: Dupli
ate name MP+po+addr-po

Should this happen users
an resort either to numeri
 names,

%diy
ross7 -num true PodWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Generator produ
ed 2 tests

on% ls

�all MP000.litmus MP001.litmus

or to disambiguating numeri
 su�xes.

%diy
ross7 -addnum true PodWW Rfe [DpAddrdR,PodRR℄,[DpAddrdW,PodWR℄ Fre

Generator produ
ed 2 tests

on% ls

�all MP+po+addr-po001.litmus MP+po+addr-po.litmus

10.5 Usage of diy7

As diy
ross7, diy7 produ
e several �les, hen
e naming issues are
riti
al. By default, diy7 uses family names

and the numeri
 naming s
heme (-num true). Users
an spe
ify a family name family for all tests with -name

family , or attempt using the des
riptive names of Se
 10.1 with -num false. Moreover, diy7 produ
es an

index �le �all that lists the �le names of all tests produ
ed.

The tool diy7 also a

epts the following, additional, do
umented options.

-
onf <file> Read
on�guration �le <file>. A
on�guration �le
onsists in a list of options, one option

per line. Lines introdu
ed by # are
omments and are thus ignored.

-size <n> Set the maximal size of
y
les. Default is 6.

-exa
t Produ
e
y
les of size exa
tly <n>, in pla
e of size up to <n>.

-npro
s <n> Reje
t tests with more than <n> threads. Default is 4.

-epro
s Produ
e tests with exa
tly <n> threads, where <n> is set above.

51

-ins <n> Reje
t tests as soon as the
ode of one thread originates from <n> edges or more. Default is 4.

-relax <relax-list> Set relax list. Default is empty. The syntax of <relax-list> is a
omma (or spa
e)

separated list of
andidate relaxations.

-mix <bool> Mix the elements of the relax list (see below), default false.

-maxrelax <n> In mix mode, upper bound on the number of di�erent
andidate relaxations tested together.

Default is 100

-safe <relax-list> Set safe list. Default is empty.

-mode (
riti
al|s
|free|uni) Control generation of
y
les, default s
. Those tags
ommand the a
ti-

vation of some
onstraints over
y
le generation, see below.

-
umul <bool> Permit impli
it
umulativity, i.e. authorise building up the sequen
e Rfe followed by a

fen
e, or the reverse. Default is true.

The relax and safe lists
ommand the generation of
y
les as follows:

1. When the relax list is empty,
y
les are built from the
andidate relaxations of the safe list.

2. When the relax list is of size 1,
y
les are built from its single element r and from the elements of the

safe list. Additionally, the
y
le produ
ed
ontains r at least on
e.

3. When the relax list is of size n, with n > 1, the behaviour of diy7 depends on the mix mode:

(a) By default (-mix false), diy7 generates n independent sets of
y
les, ea
h set being built with

one relaxation from the relax list and all the relaxations in the safe list. In other words, diy7 on

a relax list of size n behaves similarly to n runs of diy7 on ea
h
andidate relaxation in the list.

(b) Otherwise (-mix true), diy7 generates
y
les that
ontains at least one element from the relax list,

in
luding some
y
les that
ontain di�erent relaxations from the relax list. The
y
les will
ontain

at most m di�erent elements from the relax list, where m is spe
i�ed with option �-maxrelaxm�.

Generally speaking, diy7 generates �some�
y
les and does not generate �all�
y
les (up to a
ertain

size e.g.). In (default) s
 mode, diy7 performs some optimisation, most of whi
h we leave unspe
i�ed. As

an ex
eption to this non-spe
i�
ation, diy7 in s
 (default) mode is guaranteed not to generate redundant

elementary
ommuni
ation relaxation in the following sense: let us
all Com the union of Ws, Rf and Fr

(the e|i spe
i�
ation is irrelevant here). Ws being transitive and by de�nition of Fr, one easily shows that

the transitive
losure Com+ of Com is the union of Com plus [Ws,Rf℄ (Ws followed by Rf) plus [Fr,Rf℄.

As a
onsequen
e, maximal subsequen
es of
ommuni
ation relaxations in diy7
y
les are limited to single

relaxations (i.e. Ws, Rf and Fr) and to the above mentioned two sequen
es (i.e. [Ws,Rf℄ and [Fr,Rf℄). For

instan
e, [Ws,Ws℄ and [Fr,Ws℄ should never appear in diy7 generated
y
les. However, su
h subsequen
es

an be generated on an individual basis with diyone7, see the example of W5 in Se
 9.3.

In
riti
al mode (-mode
riti
al),
y
les are stri
tly spe
i�ed as follows:

1. Communi
ation
andidate relaxations sequen
es are limited to Rf,Fr,Ws,[Ws,Rf℄ and [Fr,Rf℄, as in s

mode.

2. No two internal

5

andidate relaxations follow one another.

3. If the option -
umul false is spe
i�ed, diy7 will not
onstru
t the sequen
e of Rfe followed by a

fen
e (or B-
umulativity)
andidate relaxation or of a fen
e (or A-
umulativity)
andidate relaxation

followed by Rfe.

4. Cy
les that a

ess one single memory lo
ation are reje
ted.

5

That is, the sour
e and target a

esses are by the same pro
essor.

52

5. None of the rules above applies to the internal sequen
es of
omposite
andidate relaxations. For

instan
e, if [R�,PodRR℄ is given as a
andidate relaxation, the sequen
e �R�,PodRR� appears in
y
les.

The
y
les des
ribed above are the
riti
al
y
les of [5℄.

In free mode (-mode free),
y
les are stri
tly spe
i�ed as follows:

1. Communi
ation
andidate relaxations sequen
es are limited to Rf,Fr,Ws,[Ws,Rf℄ and [Fr,Rf℄. However,

arbitrary sequen
es of
ommuni
ation
andidates are a

epted when they are internal and external or

external and internal.

2. Cy
les that a

ess one single memory lo
ation are reje
ted.

Finally, the uni mode enfor
es the following
onstraints on
y
les:

1. Sequen
es of
ommuni
ation
andidate relaxations are restri
ted in the same manner as for free mode

(see above).

2. Sequen
es of Po
andidate relaxation are reje
ted.

10.6 Usage of readRelax7

readRelax7 is a simple tool to extra
t relevant information out of litmus7 run logs of tests produ
ed by the

diy7 generator. For a given run of a given litmus test, the relevant information is:

• Whether the test yielded Ok or not,

• An optional
andidate relaxation, whi
h is the one given as argument to diy7 option -relax at test

build time, or none.

• The safe list relevant to the given test, i.e. the safe
andidate relaxations that appear in the tested

y
le.

See Se
. 6.2 for an example.

The tool readRelax7 takes �le names as arguments. If no argument is present, it reads a list of �le names

on standard input, one name per line.

11 Additional tools: extra
ting
y
les and
lassi�
ation

When non-standard family names or numeri
 names are used, it proves
onvenient to rename tests with the

standard naming s
heme. We provide two tools to do so: m
y
le7 that extra
ts
y
les from litmus sour
e

�les and
lassify7 that normalises and renames
y
les.

For instan
e, one
an use diy7 to generate all simple,
riti
al, tests up to three threads for X86 with the

following
on�guration �le X.
onf

-ar
h X86

-name X

-npro
s 3

-size 6

-safe Pod**,Fre,Rfe,Wse

-mode
riti
al

% diy7 -
onf X.
onf

Generator produ
ed 23 tests

% ls

�all X003.litmus X007.litmus X011.litmus X015.litmus X019.litmus X.
onf

X000.litmus X004.litmus X008.litmus X012.litmus X016.litmus X020.litmus

X001.litmus X005.litmus X009.litmus X013.litmus X017.litmus X021.litmus

X002.litmus X006.litmus X010.litmus X014.litmus X018.litmus X022.litmus

53

Cy
les are extra
ted with m
y
le7, whi
h takes the index �le �all as argument:

% m
y
les7 �all

X000: Wse PodWR Fre PodWR Fre PodWW

X001: Rfe PodRR Fre PodWR Fre PodWW

X002: Wse PodWR Fre PodWW

X003: Wse PodWW Wse PodWR Fre PodWW

X004: Rfe PodRW Wse PodWR Fre PodWW

X005: Rfe PodRR Fre PodWW

X006: Wse PodWW Rfe PodRR Fre PodWW

X007: Rfe PodRW Rfe PodRR Fre PodWW

X008: Wse Rfe PodRR Fre PodWW

X009: Wse PodWW Wse PodWW

...

The output of m
y
le7
an be piped into
lassify7 for family
lassi�
ation:

% m
y
les7 �all |
lassify7 -ar
h X86

2+2W

X009 -> 2+2W : PodWW Wse PodWW Wse

3.2W

X010 -> 3.2W : PodWW Wse PodWW Wse PodWW Wse

3.LB

X020 -> 3.LB : PodRW Rfe PodRW Rfe PodRW Rfe

3.SB

X016 -> 3.SB : PodWR Fre PodWR Fre PodWR Fre

ISA2

X007 -> ISA2 : PodWW Rfe PodRW Rfe PodRR Fre

LB

X019 -> LB : PodRW Rfe PodRW Rfe

MP

X005 -> MP : PodWW Rfe PodRR Fre

...

Noti
e that
lassify7 a

epts the ar
h option, as it needs to parse
y
les.

Finally, one
an normalise tests, using normalised names by piping m
y
le7 output into diyone7 with

options -norm -num false:

% mkdir sr

% m
y
les7 �all | diyone7 -ar
h X86 -norm -num false -o sr

Generator produ
ed 23 tests

% ls sr

2+2W.litmus �all R.litmus WRC.litmus WRW+WR.litmus Z6.2.litmus

3.2W.litmus ISA2.litmus RWC.litmus WRR+2W.litmus WWC.litmus Z6.3.litmus

3.LB.litmus LB.litmus SB.litmus WRW+2W.litmus Z6.0.litmus Z6.4.litmus

3.SB.litmus MP.litmus S.litmus W+RWC.litmus Z6.1.litmus Z6.5.litmus

Alternatively, one may instru
t
lassify7 to produ
e output for diyone7. In that
ase one should pass option

-diyone to
lassify7 so as to instru
t it to produ
e output that is parsable by diyone7:

% rm -rf sr
 && mkdir sr

% m
y
les7 �all |
lassify7 -ar
h X86 -diyone | diyone7 -ar
h X86 -o sr

Generator produ
ed 23 tests

% ls sr

54

2+2W.litmus �all R.litmus WRC.litmus WRW+WR.litmus Z6.2.litmus

3.2W.litmus ISA2.litmus RWC.litmus WRR+2W.litmus WWC.litmus Z6.3.litmus

3.LB.litmus LB.litmus SB.litmus WRW+2W.litmus Z6.0.litmus Z6.4.litmus

3.SB.litmus MP.litmus S.litmus W+RWC.litmus Z6.1.litmus Z6.5.litmus

11.1 Usage of m
y
le7

The tool m
y
le7 has no options and takes litmus sour
e �les or index �les as arguments. It outputs a list

of lines to standard output. Ea
h line starts with a test name, su�xed by �:�, then the
y
le of the named

test. Noti
e that this format is the input format to diyone7 in its se
ond operating mode � see Se
. 10.3.

It is important to noti
e that, for m
y
le7 to extra
t
y
les, those must be present as meta-information in

sour
e �les. In pra
ti
e, this means that m
y
le7 operates normally on sour
es produ
ed by diyone7, diy
ross7

and diy7. Moreover only one instan
e of a given
y
le will be output.

11.2 Usage of
lassify7

The tool
lassify7 reads its standard input, interpreting is as a list of
y
les in the output format of m
y
le7.

It normalises and
lassi�es those
y
les. The tool
lassify7 a

epts the following do
umented options:

-ar
h (X86|PPC|ARM) Set ar
hite
ture. Default is PPC. ARM support is experimental.

-u Instru
t
lassify7 to fail when two tests have the same normalised name. Otherwise
lassify7 will output

one line per test, regardless of dupli
ate names.

-diyone Output a normalised list of names and
y
les, whi
h is legal input for diyone7.

55

Part III

Simulating memory models with herd7

The tool herd7 is a memory model simulator. Users may write simple, single events, axiomati
 models of

their own and run litmus tests on top of their model. The herd7 distribution already in
ludes some models.

The authors of herd7 are Jade Alglave and Lu
 Maranget.

12 Writing simple models

This se
tion introdu
es
at, our language for des
ribing memory models. The
at language is a domain

spe
i�
 language for writing and exe
uting memory models. From the language perspe
tive,
at is loosely

inspired by OCaml. That is, it is a fun
tional language, with similar syntax and
onstru
ts. The basi
 values

of
at are sets of events, whi
h in
lude memory events but also additional events su
h as fen
e events, and

relations over events.

12.1 Sequential
onsisten
y

The simulator herd7 a

epts models written in text �les. For instan
e here is s
.
at, the de�nition of the

sequentially
onsistent (SC) model in the partial-order style:

SC

(* Define
o (and fr) *)

in
lude "
os.
at"

(* All
ommuni
ation relations *)

let
om = rf | fr |
o

(* Sequential
onsisten
y *)

a
y
li
 po |
om as s

The model above illustrates some features of model de�nitions:

1. A model �le starts with a tag (here SC), whi
h
an also be a string (in double quotes) in
ase the tag

in
ludes spe
ial
hara
ters or spa
es.

2. Pre-de�ned bindings. Here po (program order) and rf (read from) are pre-de�ned. The remaining two

ommuni
ation relations (
o and fr) are
omputed by the in
luded �le
os.
at, whi
h we des
ribe

later � See Se
. 12.4. For simpli
ity, we may as well assume that
o and fr are pre-de�ned.

3. The
omputation of new relations from other relations, and their binding to a name with the let

onstru
t. Here, a new relation
om is the union �|� of the three pre-de�ned
ommuni
ation relations.

4. The peforman
e of some
he
ks. Here the relation �po |
om� (i.e. the union of program order po and

of
ommuni
ation relations) is required to be a
y
li
. Che
ks
an be given names by su�xing them

with �as name�. This last feature will be used in Se
. 13.2

One
an then run some litmus test, for instan
e SB (for Store Bu�ering, see also Se
. 1.1), on top of the

SC model:

% herd7 -model ./s
.
at SB.litmus

Test SB Allowed

States 3

56

0:EAX=0; 1:EAX=1;

0:EAX=1; 1:EAX=0;

0:EAX=1; 1:EAX=1;

No

Witnesses

Positive: 0 Negative: 3

Condition exists (0:EAX=0 /\ 1:EAX=0)

Observation SB Never 0 3

Hash=7dbd6b8e6dd4ab
2ef3d48b0376fb2e3

The output of herd7 mainly
onsists in the list of �nal states that are allowed by the simulated model.

Additional output relates to the test
ondition. One sees that the test
ondition does not validate on top

of SC, as �No� appears just after the list of �nal states and as there is no �Positive� witness. Namely, the

ondition �exists (0:EAX=0 /\ 1:EAX=0)� re�e
ts a non-SC behaviour, see Se
. 12.1.

The simulator herd7works by generating all
andidate exe
utions of a given test. By �
andidate exe
ution�

we mean a
hoi
e of events, program order po, of the read-from relation rf and of �nal writes to memory

(last write to a given lo
ation)

6

. In the
ase of the SB example, we get the following four exe
utions:

a: Wx=1

b: Ry=1 d: Rx=1

: Wy=1

po

rf

rf

rf

po

rf

a: Wx=1

b: Ry=1

: Wy=1

d: Rx=0

po

rf

rf

po

rf

fr

rf

a: Wx=1

b: Ry=0 d: Rx=1

: Wy=1

po

rf

rf

fr

po

rf

rf

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

po

rf

fr

po

rf

fr

rf

rf

Indeed, there is no
hoi
e for the program order po, as there are no
onditional jumps in this example; and

no
hoi
e for the �nal writes either, as there is only one store per lo
ation, whi
h must be
o-after the initial

stores (pi
tured as small red dots). Then, there are two read events from lo
ations x and y respe
tively,

whi
h take their values either from the initial stores or from the stores in program. As a result, there are

four possible exe
utions. The model s
.
at gets exe
uted on ea
h of the four
andidate exe
utions. The

three �rst exe
utions are a

epted and the last one is reje
ted, as it presents a
y
le in po | fr. On the

following diagram, the
y
le is obvious:

6

Alternatively, we may adopt the simpler view that a
andidate exe
ution in
ludes a
hoi
e of all
ommuni
ation relations.

57

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

po rf

fr

porf

fr

rf

rf

12.2 Total Store Order (TSO)

However, the non-SC exe
ution shows up on x86 ma
hines, whose memory model is TSO. As TSO relaxes

the write-to-read order, we attempt to write a TSO model tso-00.
at, by simply removing write-to-read

pairs from the a
y
li
ity
he
k:

"A first attempt for TSO"

in
lude "
os.
at"

(* Communi
ation relations that order events*)

let
om-tso = rf |
o | fr

(* Program order that orders events *)

let po-tso = po & (W*W | R*M)

(* TSO global-happens-before *)

let ghb = po-tso |
om-tso

a
y
li
 ghb as tso

show ghb

This model illustrates several features of model de�nitions:

• New prede�ned sets: W, R and M, whi
h are the sets of read events, write events and of memory events,

respe
tively.

• The
artesian produ
t operator �*� that returns the
artesian produ
t of two event sets as a relation.

• The interse
tion operator �&� that operates on sets and relations.

As a result, the e�e
t of the de
laration let po-tso = po & (W*W | R*M) is to de�ne po-tso as the program

order on memory events minus write-to-read pairs.

We run SB on top of the tentative TSO model:

58

% herd7 -model tso-00.
at SB.litmus

Test SB Allowed

States 4

0:EAX=0; 1:EAX=0;

0:EAX=0; 1:EAX=1;

0:EAX=1; 1:EAX=0;

0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 1 Negative: 3

...

The non-SC behaviour is now a

epted, as write-to-read po-pairs do not parti
ipate to the a
y
li
ity
he
k

any more. In e�e
t, this allows the last exe
ution above, as ghb (i.e. po-tso |
om-tso) is a
y
li
.

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

po

ghb fr

po

ghb fr

However, our model tso-00.
at is �awed: it is still to stri
t, forbidding some behaviours that the TSO

model should a

ept. Consider the test SB+r�-pos, whi
h is test STFW-PPC for X86 from Se
. 1.3 with a

normalised name (see Se
. 10.1). This test targets the following exe
ution:

59

a: Wx=1

b: Rx=1

: Ry=0

d: Wy=1

e: Ry=1

f: Rx=0

rf

po

fr

rf

po

fr

rf

rf

Namely the test
ondition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) spe
i�es that Thread 0
writes 1 into lo
ation x, reads the value 1 from the lo
ation x (possibly by store forwarding) and then reads

the value 0 from the lo
ation y; while Thread 1 writes 1 into y, reads 1 from y and then reads 0 from x.
Hen
e, this test derives from the previour SB by adding loads in the middle, those loads being satis�ed from

lo
al stores. As
an be seen by running the test on top of the tso-00.
at model, the target exe
ution is

forbidden:

% herd7 -model tso-00.
at SB+rfi-pos.litmus

Test SB+rfi-pos Allowed

States 15

0:EAX=0; 0:EBX=0; 1:EAX=0; 1:EBX=0;

...

0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=1;

No

Witnesses

Positive: 0 Negative: 15

..

60

However, running the test with litmus demonstrates that the behaviour is observed on some X86 ma
hine:

% ar
h

x86_64

% litmus7 -ma
h x86 SB+rfi-pos.litmus

...

Test SB+rfi-pos Allowed

Histogram (4 states)

11589 *>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=0;

3993715:>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

3994308:>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

388 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=1;

Ok

Witnesses

Positive: 11589, Negative: 7988411

Condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) is validated

...

As a
on
lusion, our tentative TSO model is too strong. The following diagram pi
tures its ghb relation:

61

a: Wx=1

b: Rx=1

: Ry=0

d: Wy=1

e: Ry=1

f: Rx=0

rf ghb

ghb

fr ghb rf ghb

frghb

ghb

rf

rf

One easily sees that ghb is
y
li
, wheras it should not. Namely, the internal read-from relation r� does not

reate global order in the TSO model. Hen
e, r� is not in
luded in ghb. We rephrase our tentative TSO

model, resulting into the new model tso-01.
at:

"A se
ond attempt for TSO"

in
lude "
os.
at"

(* Communi
ation relations that order events*)

let
om-tso = rfe |
o | fr

(* Program order that orders events *)

let po-tso = po & (W*W | R*M)

(* TSP global-happens-before *)

let ghb = po-tso |
om-tso

a
y
li
 ghb

show ghb

62

As
an be observed above rfi (internal read-from) is no longer in
luded in ghb. However, rfe (external

read-from) still is. Noti
e that rfe and rfi are pre-de�ned.

As intended, this new tentative TSO model allows the behaviour of test SB+r�-pos:

% herd7 -model tso-01.
at SB+rfi-pos.litmus

Test SB+rfi-pos Allowed

States 16

...

0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

...

Ok

Witnesses

Positive: 1 Negative: 15

...

And indeed, the global-happens-before relation is no-longer
y
li
:

a: Wx=1

b: Rx=1

: Ry=0

d: Wy=1

e: Ry=1

f: Rx=0

rf

ghb

ghbfr

rf

ghbfr ghb

rf

rf

We are not done yet, as our model is too weak in two aspe
ts. First, it has no semanti
s for fen
es. As

a result the test SB+mfen
es is allowed, whereas it should be forbidden, as this is the very purpose of the

63

fen
e mfen
e.

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

mfen
e

fr

fr

mfen
erf

rf

One easily solves this issue by �rst de�ning the mfen
e that relates events with a MFENCE event po-in-between

them; and then by adding mfen
e to the de�nition of po-tso:

let mfen
e = po & (_ * MFENCE) ; po

let po-tso = po & (W*W | R*M) | mfen
e

Noti
e how the relation mfen
e is de�ned from two pre-de�ned sets: �_� the universal set of all events

and MFENCE the set of fen
e events generated by the X86 mfen
e instru
tion. An alternative, more pre
ise

de�nition, is possible:

let mem-to-mfen
e = po & M * MFENCE

let mfen
e-to-mem = po & MFENCE * M

let mfen
e = mem-to-mfen
e; mfen
e-to-mem

This alternative de�nition of mfen
e, although yielding a smaller relation, is equivalent to the original one

for our purpose of
he
king ghb a
y
li
ity.

But the resulting model is still too weak, as it allows some behaviours that any model must reje
t for

the sake of single thread
orre
tness. The following test CoRWR illustrates the issue:

X86 CoRWR

{ }

P0 ;

MOV EAX,[x℄ ;

MOV [x℄,$1 ;

64

MOV EBX,[x℄ ;

exists (0:EAX=1 /\ 0:EBX=0)

The test �nal
ondition targets the following ex
ution
andidate:

ix:Wx=0

b: Wx=1

: Rx=0

a: Rx=1

o

rf

rf

fr

The TSO
he
k �a
y
li
 po-tso|
om-tso� does not su�
e to reje
t two absurd behaviours pi
tured in the

exe
ution diagram above: (1) the read a is allowed to read from the po-after write b, as r� is not in
luded

in
om-tso; and (2) the read c is allowed to read the initial value of lo
ation x although the initial write d is

o-before the write b, sin
e po & (W * R) is not in po-tso.

For any model, we rule out those very untimely behaviours by the so-
alled unipro

he
k that states that

exe
utions proje
ted on events that a

ess one variable only are SC. In pra
ti
e, having de�ned po-lo
 as po

restri
ted to events that tou
h the same address (i.e. as po & lo
), we further require the a
y
li
ity of the

relation po-lo
|fr|rf|
o. In the TSO
ase, the unipro

he
k
an be somehow simpli�ed by
onsidering

only the
y
les in po-lo
|fr|rf|
o that are not already reje
ted by the main
he
k of the model. This

amounts to design spe
i�

he
ks for the two relations that are not global in TSO: rfi and po & (W*R).

Doing so, we �nally produ
e a
orre
t model for TSO tso-02.
at:

"A third attempt for TSO"

in
lude "
os.
at"

(* Unipro

he
k spe
ialized for TSO *)

irreflexive po-lo
 & (R*W); rfi as unipro
RW

irreflexive po-lo
 & (W*R); fri as unipro
WR

(* Communi
ation relations that order events*)

let
om-tso = rfe |
o | fr

(* Program order that orders events *)

let mfen
e = po & (_ * MFENCE) ; po

let po-tso = po & (W*W | R*M) | mfen
e

(* TSP global-happens-before *)

let ghb = po-tso |
om-tso

show mfen
e,ghb

a
y
li
 ghb as tso

65

This last model illustrates another feature of
at: herd7 may also performs irre�exivity
he
ks with the

keyword �irreflexive�.

12.3 Sequential
onsisten
y, total order de�nition

We now illustrate another style of model. We
onsider the original de�nition of sequential
onsisten
y [3℄.

An exe
ution is SC when there exists a total order S on events su
h that:

1. S in
ludes the program order po;

2. and read events read from the most re
ent write events in the past, i.e. a read r from lo
ation x reads

the value stored by the S-maximal write amongst those writes to lo
ation x that are S smaller than r.

So we
ould just generate all total orders amongst memory events, and �lter those �s
heduling order
andi-

dates� a

ording to the two rules above.

Things are a bit more
omplex in herd7, due to the presen
e of initial and �nal writes. Up to now we

have ignored initial and �nal writes, we are now going to integrate them expli
itly.

Initial writes are write events that initialise the memory lo
ations. Initial writes are not generated by

the instru
tions of the test. Instead, they are
reated by herd7 ma
hinery, and are available from model text

as the set IW.

Final writes may be generated by program instru
tions, and, when su
h, they must be ordered by S.
A �nal write is a write to a phantom read performed on
e program exe
ution is over. The
onstraint on

�nal writes originates from herd7 te
hnique to enumerate exe
ution
andidates: a
tual exe
ution
andidates

also in
lude a
hoi
e of �nal writes for the lo
ations that are observed in the test �nal
ondition

7

. As test

out
ome (i.e. the �nal values of observed lo
ations) is settled before exe
uting the model, it is important

not to a

ept exe
utions that yield a di�erent out
ome. Doing so may validate out
omes that should be

reje
ted. In pra
ti
e, the �nal write wf to lo
ation x must follow all other writes to x in S. Considering

that the set of �nal writes is available to
at models as the pre-de�ned set FW, the
onstraint on �nal writes

an be expressed as a relation:

let preSC = lo
 & (W \ FW) * FW

Where lo
 is a prede�ned relation that relates all events that a

ess the same lo
ation.

By
ontrast with �nal writes, initial writes are not generated by program instru
tions, and it is possible

not to order them
ompletely. In parti
ular, it is not useful to order initial writes to di�erent lo
ations, nor

the initial write to lo
ation x with any a

ess to lo
ation y. Noti
e that we
ould in
lude initial writes in S
as we did for �nal writes. Not doing so will improve e�
ien
y.

Finally, the order S is not just any order on memory events (prede�ned set M, whi
h in
ludes initial and

�nal writes writes), it is a topologi
al order of the program events (implemented as the set M\IW) that extends

the pre-order preSC. We
an generate all su
h topologi
al orders with the
at primitive linearisations:

let allS = linearisations(M\IW,preSC)

The
all linearisation(E,r), where E is a set of events and r is a relation on events, returns the set of

all total orders de�ned on S that extend r. Noti
e that if r is
y
li
, the empty set is returned.

We now need to iterate over the set allS. We do so with the with
onstru
t:

with S from allS

It is important to noti
e that the
onstru
t above extends the
urrent exe
ution
andidate (i.e. a
hoi
e of

events, plus a
hoi
e of two relations po and rf) with a
andidate order S. In other words, the s
ope of

the iteration is the remainder of the model text. On
e model exe
ution terminates for a
hoi
e of S (some

7

Doing so permits pruning exe
utions that are irrelevant to the test �nal
ondition, see herd7 option -speed
he
k

66

element of allS), model exe
ution restarts just after the with
onstru
t, with variable S bound to the next

hoi
e pi
ked in allS.

As a �rst
onsisten
y
he
k, we
he
k that S in
ludes the program order:

empty po \ S as PoCons

Noti
e that, to
he
k for in
lusion, we test the emptyness of relation di�eren
e (operator �\�).

It remains to
he
k that the rf relation of the exe
ution
andidate is the same as the one de�ned by

ondition 2. To that aim, we
omplement S with the
onstraint over initial writes that must pre
ede all

events to their lo
ation:

let S = S | lo
 & IW * (M \ IW)

Observe that S is no longer a total order. However, it is still a total order when restri
ted to events that

a

ess a given lo
ation, whi
h is all that matters for
ondition 2 to give a value to all reads. As regards our

SC model, we de�ne rf-S the read-from relation indu
ed by S as follows:

let WRS = W * R & S & lo
 (* Writes from the past, same lo
ation *)

let rf-S = WRS \ (S;WRS) (* Most re
ent amongst them *)

The de�nition is a two-step pro
ess: we �rst de�ne a relation WRS from writes to reads (to the same lo
ation)

that follow them in S. Observe that, by
omplementing S with initial writes, we a
hieve that for any read r
there exists at least a write w su
h thar (w, r) ∈ WRS. It then remains to �lter out non-maximal writes in WRS

as we do in the de�nition of rf-S, by the means of the di�eren
e operator �\�. We then
he
k the equality

of rf (pre-de�ned as part of the
andidate exe
ution) and of rf-S by double in
lusion:

empty rf \ rf-S as RfCons

empty rf-S \ rf as RfCons

As an exemple, he show six attempts of po
ompatible S orders for the non-SC out
ome of the test SB

in �gure 3. Observe that all attempts fail as rf and rf-S are di�erent in all diagrams.

We also show all su

essfull SC s
heduling in �gure 4.

For referen
e we provide our
omplete model lamport.
at

"SC, L. Lamport style"

(* writes to lo
ation x pre
ede final write to lo
ation x *)

let preSC = lo
 & (W \ FW) * FW

(* Compute the set of total orders that extend preSC on program events *)

let allS = linearisations(M \ IW,preSC)

(* For all su
h orders *)

with S from allS

let PO = po

let POminusS = PO\S

(* Che
k
ompatibility with po *)

empty po \ S as S
Po

(* Add initial writes *)

let S = S | lo
 & (IW * (M \ IW))

67

Figure 3: Failed attempts of SC s
heduling orders S.

iy:Wy=0

b: Ry=0

ix:Wx=0

a: Wx=1

d: Rx=0

: Wy=1

S ,rf-S ,rf

S

rf

S

rf-SS

S

iy:Wy=0

b: Ry=0

: Wy=1

ix:Wx=0

a: Wx=1

d: Rx=0

rf

S

S

rf po

S

rf-S

S

S ,rf-S

po

iy:Wy=0

b: Ry=0

: Wy=1

ix:Wx=0

a: Wx=1

d: Rx=0

rf

S

S

rf

po

S

rf-S

rf-S

S

S

iy:Wy=0

b: Ry=0

: Wy=1ix:Wx=0

a: Wx=1

d: Rx=0

rf

S

S

rf S

rf-S

S

S

rf-S

po

iy:Wy=0

b: Ry=0

: Wy=1 ix:Wx=0

a: Wx=1

d: Rx=0

rf

S

S

rf

po

S ,rf-S

S

rf-S

po

S

iy:Wy=0

b: Ry=0

: Wy=1 ix:Wx=0

d: Rx=0

a: Wx=1

rf

S

S ,rf-S ,rf

S

rf-S

S

S

68

Figure 4: SC exe
utions of test SB.

iy:Wy=0

b: Ry=0

ix:Wx=0

a: Wx=1

d: Rx=1

: Wy=1

S ,rf-S ,rf

S

S

rf-S ,rfS

S

iy:Wy=0

: Wy=1 ix:Wx=0

d: Rx=0

a: Wx=1

b: Ry=1

S

S ,rf-S ,rf

S

rf-S ,rf

S

S

iy:Wy=0

: Wy=1

ix:Wx=0

a: Wx=1

b: Ry=1

d: Rx=1

S

S

po

S

rf-S ,rf

S

S ,rf-S ,rf

po

iy:Wy=0

: Wy=1

ix:Wx=0

a: Wx=1

b: Ry=1

d: Rx=1

S

S

po

S

rf-S ,rf

rf-S ,rf

S

S

iy:Wy=0

: Wy=1ix:Wx=0

a: Wx=1

b: Ry=1

d: Rx=1

S

S

S

rf-S ,rf

S

S

rf-S ,rf

po

iy:Wy=0

: Wy=1 ix:Wx=0

a: Wx=1

b: Ry=1

d: Rx=1

S

S

po

S ,rf-S ,rf

S

rf-S ,rf

po

S

69

(* Define most re
ent write in the past *)

let WRS = W * R & S & lo
 (* Writes from the past, same lo
ation *)

let rf-S = WRS \ (S;WRS) (* Most re
ent amongst them *)

(* Che
k equality with rf *)

empty rf \ rf-S as RfCons

empty rf-S \ rf as RfCons

12.4 Computing
oheren
e orders

All the models seen so far in
lude the �le
os.
at that de�ne �
oheren
e relations�, written
o. This se
tion

des
ribes the �le
os.
at. It
an be skipped in �rst reading, as users may �nd su�
ient to in
lude the �le.

For a given lo
ation x the
oheren
e order is a total order on the write events to lo
ation x. The
oheren
e
relation
o is the union of those total orders for all lo
ations. In this se
tion, we show how to
ompute all

possible
oheren
e orders for a
andidate exe
ution. We seize the opportunity to introdu
e advan
ed features

of the
at language, su
h as fun
tions and pattern mat
hing over sets.

Possible
oheren
e orders for a given lo
ation x are not totally arbitrary in two aspe
ts:

1. The write events to lo
ation x in
lude the initial write event to lo
ation x. The initial write to x must

ome �rst in any
oheren
e order for x.

2. One of the writes to x performed by the test (may) have been de
lared to be �nal by herd7 ma
hinery

prior to model exe
ution. In that
ase, the �nal write to x must
ome last in any
oheren
e order for x.

See Se
. 12.3 for details on initial and �nal writes.

We
an express the two
onditions above for all lo
ations of the program as a relation
o0:

let
o0 = lo
 & (IW*(W\IW)|(W\FW)*FW)

Where the pre-de�ned sets IW and FW are the sets of all initial and �nal writes respe
tively.

Then, assuming that Wx is the set of all writes to lo
ation x, one
an
ompute the set of all possible

oheren
e orders for x with the linearisations primitive as linearisations(Wx,
o0). In pra
ti
e, we

de�ne a fun
tion that takes the set Wx as an argument:

let makeCoX(Wx) = linearisations(Wx,
o0)

The linearisations primitive is introdu
ed in Se
. 12.3. It returns all topologi
al sorts of the events of the

set Wx that are
ompatible with the relation
o0.

In fa
t, we want to
ompute the set of all possible
o relations, i.e. all the unions of all the possible

oheren
e orders for all lo
ations x. To that end we use another
at primitive: partition(S), whi
h takes

a set of events as argument and returns a set of set of events T = {S1, . . . , Sn}, where ea
h Si is the set of

all events in S that a
t on lo
ation Li, and, of
ourse S is the union

⋃i=n

i=1 Si. Hen
e we shall
ompute the

set of all Wx sets as partition(W), where W is the pre-de�ned set of all writes (in
luding initial writes).

For
ombining the e�e
t of the partition and linearisations primitives, we �rst de�ne a map fun
tion

that, given a set S = {e1, . . . , en} and a fun
tion f , returns the set {f(e1), . . . , f(en)}:

let map f =

let re
 do_map S = mat
h S with

|| {} -> {}

|| e ++ S -> f e ++ do_map S

end in

do_map

70

The map fun
tion is written in
urried style. That is one
alls it as map f S, parsed as (map f) S. More

pre
isely, the left-most fun
tion
all (map f) returns a fun
tion. Here it returns do_map with free variable

f being bound to the argument f . The de�nition of map illustrate several new features:

1. The empty set
onstant �{}�, and the set addition operator e ++ S that returns the set S augmented

with element e.

2. Re
ursive fun
tion de�nitions. The fun
tion do_map is re
ursive as it
alls itself.

3. Pattern mat
hing on sets. This
onstru
t, similar to OCaml pattern mat
hing on lists, dis
riminates

between empty (|| {} -> e0) and non-empty (|| e ++ es -> e1) sets. In the se
ond
ase of a non-

empty set, the expression e1 is evaluated in a
ontext extended with two bindings: a binding from

the variable e to an arbitrary element of the mat
hed set, and a binding from the variable es to the

mat
hed set minus the arbitrary element.

Then, we generate the set of all possible
oheren
e orders for all lo
ations x as follows:

let allCoX = map makeCoX (partition(W))

Noti
e that allCoX is a set of sets of relations, ea
h element being the set of all possible
oheren
e orders

for a spe
i�
 x.
We still need to generate all possible
o relations, that is all unions of the possible
oheren
e orders for

all lo
ations x. It
an be done by another
at fun
tion:
ross, whi
h takes a set of sets S = {S1, S2, . . . , Sn}
as argument and returns all possible unions built by pi
king elements from ea
h of the Si:

{ e1 ∪ e2 ∪ · · · ∪ en | e1 ∈ S1, e2 ∈ S2, . . . , en ∈ Sn }

One may noti
e that if S is empty, then
ross should return one relation exa
tly: the empty relation,

i.e. the neutral element of the union operator. This
hoi
e for
ross(∅) is natural when we de�ne
ross

indu
tively:

ross(S1 ++S) =
⋃

e1∈S1,t∈
ross(S)

{e1 ∪ t}

In the de�nition above, we simply build
ross(S1 ++S) by building the set of all unions of one relation e1
pi
ked in S1 and of one relation t pi
ked in
ross(S).

So as to write
ross, we �rst de�ne a
lassi
al fold fun
tion over sets: given a set S = {e1, e2, . . . , en},
an initial value y0 and a fun
tion f that takes a pair (e, y) as argument, fold
omputes:

f(ei1 , f(ei2 , . . . , f(ein , y0)))

where i1, i2, . . . , in de�nes a permutation of the indi
es 1, 2, . . . , n.

let fold f =

let re
 fold_re
 (es,y) = mat
h es with

|| {} -> y

|| e ++ es -> fold_re
 (es,f (e,y))

end in

fold_re

The fun
tion fold is written in the same
urried style as map. Noti
e that the inner fun
tion fold_re

takes one argument. However this argument is a pair. As a gentle example of fold usage, we
ould have

de�ned map as:

let map f = fun S -> fold (fun (e,y) -> f e ++ y) (S,{})

This example also introdu
e �anonymous� fun
tions.

As a more involved example of fold usage, we write the fun
tion
ross.

71

let re

ross S = mat
h S with

|| {} -> { 0 } (* 0 is the empty relation *)

|| S1 ++ S ->

let ts =
ross S in

fold

(fun (e1,r) -> map (fun t -> e1 | t) ts | r)

(S1,{})

end

The fun
tion
ross is a re
ursive fun
tion over a set (of sets). Its
ode follows the indu
tive de�nition given

above.

Finally, we generate all possible
o relations by:

let allCo =
ross allCoX

The �le
os.
at goes on by iterating over allCo using the with x from S
onstru
t:

with
o from allCo

See Se
. 12.3 for details on this
onstru
t.

On
e
o has been de�ned, one de�nes fr and internal and external variations:

(* From now,
o is a
oheren
e relation *)

let
oi =
o & int

let
oe =
o & ext

(* Compute fr *)

let fr = rf^-1 ;
o

let fri = fr & int

let fre = fr & ext

The pre-de�ned relation ext (resp. int) relates events generated by di�erent (resp. the same) threads.

13 Produ
ing pi
tures of exe
utions

The simulator herd7
an be instru
ted to produ
e pi
tures of exe
utions. Those pi
tures are instrumental in

understanding and debugging models. It is important to understand that herd7 does not produ
e pi
tures

by default. To get pi
tures one must instru
t herd7 to produ
e pi
tures of some exe
utions with the -show

option. This option a

epts spe
i�
 keywords, its default being �none�, instru
ting herd7 not to produ
e any

pi
ture.

A frequentlty used keyword is �prop� that means �show the exe
utions that validate the proposition in

the �nal
ondition�. Namely, the �nal
ondition in litmus test is a quanti�ed boolean proposition as for

instan
e �exists (0:EAX=0 /\ 1:EAX=0)� at the end of test SB.

But this is not enough, users also have to spe
ify what to do with the pi
ture: save it in �le in the DOT

format of the graphviz graph visualization software, or display the image,

8

or both. One instru
ts herd7

to save images with the -o dirname option, where dirname is the name of a dire
tory, whi
h must exists.

Then, when pro
essing the �le name.litmus, herd7 will
reate a �le name.dot into the dire
tory dirname.

For displaying images, one uses the -gv option.

As an example, so as to display the image of the non-SC behaviour of SB, one should invoke herd7 as:

% herd7 -model tso-02.
at -show prop -gv SB.litmus

As a result, users should see a window popping and displaying this image:

8

This option requires the Posts
ript visualiser gv.

72

Test SB, Generi
(A third attempt for TSO)

Thread 0

Thread 1

e: Wy=0

Init

b: Ry=0

pro
:0 poi:1

MOV EAX,[y℄

: Wy=1

pro
:1 poi:0

MOV [y℄,1

f: Wx=0

Init

a: Wx=1

pro
:0 poi:0

MOV [x℄,1

d: Rx=0

pro
:1 poi:1

MOV EAX,[x℄

rf ghb
o

o

rf ghbpo

ghb

fr

po

ghb fr

Noti
e that we got the PNG version of this image as follows:

73

Figure 5: The non-SC behaviour of SB is allowed by TSO

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

po

ghb fr

po

ghb fr

% herd7 -model tso-02.
at -show prop -o /tmp SB.litmus

% dot -Tpng /tmp/SB.dot -o SB+CLUSTER.png

That is, we applied the dot tool from the graphviz pa
kage, using the appropriate option to produ
e a PNG

image.

One may observe that there are ghb arrows in the diagram. This results from the show ghb instru
tion

at the end of the model �le tso-02.
at.

13.1 Graph modes

The image above mu
h di�ers from the one in Se
. 12.2 that des
ribes the same exe
ution and that is

reprodu
ed in Fig. 5

In e�e
t, herd7
an produ
e three styles of pi
tures, dot
lustered pi
tures, dot free pi
tures, and neato

pi
tures with expli
it pla
ement of the events of one thread as a
olum. The style is
ommanded by the

-graph option that a

epts three possible arguments:
luster (default), free and
olumns. The following

pi
tures show the e�e
t of graph styles on the SB example:

74

-graph
luster -graph free -graph
olumns

Thread 0

Thread 1

iy:Wy=0

b: Ry=0
: Wy=1

ix:Wx=0

a: Wx=1

d: Rx=0

rf ghb
o

o

rf ghbpo

ghb

fr

po

ghb fr

iy:Wy=0

b: Ry=0

: Wy=1 ix:Wx=0

a: Wx=1

d: Rx=0

rf ghb

o

o

rf ghbpo:0

ghb fr

po:1

ghb fr

ix: Wx=0, iy: Wy=0

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

Thread 0 Thread 1

o

rf ghb

o

rf ghb

po

ghbfr

po

ghbfr

Noti
e that we used another option -squished true that mu
h redu
es the information displayed in nodes.

Also noti
e that the �rst two pi
tures are formatted by dot, while the rightmost pi
ture is formatted by

neato.

One may also observe that the �-graph
olumns� pi
ture does not look exa
tly like Fig. 5. For instan
e

the ghb arrows are thi
ker in the �gure. There are many parameters to
ontrol neato (and dot), many of

whi
h are a

essible to herd7 users by the means of appropriate options. We do not intend to des
ribe them

all. However, users
an reprodu
e the style of the diagram of this manual using yet another feature of herd7:

on�guration �les that
ontains settings for herd7 options and that are loaded with the -
onf name option.

In this manual we mostly used the do
.
fg
on�guration �le. As this �le is present in herd7 distribution,

users
an use the diagram style of this manual:

% herd7 -
onf do
.
fg ...

13.2 Showing forbidden exe
utions

Images are produ
ed or displayed on
e the model has been exe
uted. As a
onsequen
e, forbidden exe
utions

won't appear by default. Consider for instan
e the test SB+mfen
es, where the mfen
e instru
tion is used

to forbid SB non-SC exe
ution. Runing herd7 as

% herd7 -model tso-02.
at -
onf do
.
fg -show prop -gv SB+mfen
es.litmus

75

will produ
e no pi
ture, as the TSO model forbids the target exe
ution of SB+mfen
es.

To get a pi
ture, we
an run SB+mfen
es on top of the mininal model, a pre-de�ned model that allows

all exe
utions:

% herd7 -model minimal -
onf do
.
fg -show prop -gv SB+mfen
es.litmus

And we get the pi
ture:

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

mfen
e

fr

fr

mfen
erf

rf

It is worth mentioning again that although the minimal model allows all exe
utions, the �nal
ondition

sele
ts the displayed pi
ture, as we have spe
i�ed the -show prop option.

The pi
ture above shows mfen
e arrows, as all fen
e relations are displayed by the minimal model.

However, it does not show the ghb relation, as the minimal model knows nothing of it. To display ghb we

ould write another model �le that would be just as tso-02.
at, with
he
ks erased. The simulator herd7

provides a simpler te
hnique: one
an instru
t herd7 to ignore either all
he
ks (-through invalid), or a

sele
tion of
he
ks (-skip
he
ks name1,...,namen). Thus, either of the following two
ommands

% herd7 -through invalid -model tso-02.
at -
onf do
.
fg -show prop -gv SB+mfen
es.litmus

% herd7 -skip
he
k tso -model tso-02.
at -
onf do
.
fg -show prop -gv SB+mfen
es.litmus

will produ
e the pi
ture we wish:

76

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

mfen
eghb

ghb fr

ghb fr

mfen
e ghbrf

rf

Noti
e that mfen
e and ghb are displayed be
ause of the instru
tion �show mfen
e ghb� (fen
e relation are

not shown by default); while -skip
he
k tso works be
ause the tso-02.
at model names its main
he
k

with �as tso�.

The image above is barely readable. For su
h graphs with many relations, the
luster and free modes

are worth a try. The
ommands:

% herd7 -skip
he
k tso -model tso-02.
at -
onf do
.
fg -show prop -graph
luster -gv SB+mfen
es.litmus

% herd7 -skip
he
k tso -model tso-02.
at -
onf do
.
fg -show prop -graph free -gv SB+mfen
es.litmus

will produ
e the images:

77

Thread 0

Thread 1

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

mfen
e ghb

ghb fr

mfen
e ghb

ghb fr

rf

rf

a: Wx=1

b: Ry=0

: Wy=1

d: Rx=0

po:0 mfen
eghb

frghb

po:1 mfen
eghb

frghb

rf

rf

Namely,
ommand line options are s
anned left-to-right, so that most of the settings of do
.
fg are kept

9

(for instan
e thi
k ghb arrows), while the graph mode is overriden.

14 Model de�nitions

We des
ribe our
at langage for de�ning models. The syntax of the language is given in BNF-like nota-

tion. Terminal symbols are set in typewriter font (like this). Non-terminal symbols are set in itali
 font

(like that). An unformatted verti
al bar . . . | . . . denotes alternative. Square bra
kets [. . .] denote optional

omponents. Curly bra
kets { . . .} denotes zero, one or several repetitions of the en
losed
omponents.

Parentheses (. . .) denote grouping.
Model sour
e �les may
ontain
omments of the OCaml type ((*. . . *),
an be nested), or line
omments

starting with �//� and running until end of line.

14.1 Overview

The
at language is mu
h inspired by OCaml, featuring immutable bindings, �rst-
lass fun
tions, pattern

mat
hing, et
. However,
at is a domain spe
i�
 language, with important di�eren
es from OCaml.

1. Base values are spe
ialised, they are sets of events and relations over events. There are also tags,

akin to C enumerations or OCaml �
onstant�
onstru
tors and �rst
lass fun
tions. There are two

stru
tured values: tuples of values and sets of values.

9

The setting of showthread is also
hanged, by the omitted -showthread true
ommand line option

78

2. There is a distin
tion between expressions that evaluate to some value, and instru
tions that are

exe
uted for their e�e
t.

A model, or
at program is a sequen
e of instru
tions. At startup, pre-de�ned identi�ers are bound to event

sets and relations over events. Those pre-de�ned identi�ers des
ribe a
andidate exe
ution (in the sense of

the memory model). Exe
uting the model means allowing or forbiding that
andidate exe
ution.

14.2 Identi�ers

letter ::= a . . . z | A . . . Z

digit ::= 0 . . . 9

id ::= letter {letter | digit | _ | . | -}

Identi�ers are rather standard: they are a sequen
e of letters, digits, �_� (the unders
ore
hara
ter), �.�

(the dot
hara
ter) and �-� (the minus
hara
ter), starting with a letter. Using the minus
hara
ter inside

identi�ers may look a bit surprising. We did so as to allow identi�ers su
h as po-lo
.

At startup, pre-de�ned identi�ers are bound to event sets and to relations between events.

Those pre-de�ned identi�ers �rst des
ribe the events of the
andidate exe
ution as various sets, as de-

s
ribed by the �rst table of �gure 6. Spe
i�
 fen
e event sets depends on the test ar
hite
ture, their name is

Figure 6: Pre-de�ned event sets.

identi�er name des
ription

W write events

R read events

M memory events we have M = W ∪ R

IW initial writes feed reads that read from the initial state

FW �nal writes writes that are observed at the end of test exe
ution

B bran
h events

RMW read-modify-write

events

F fen
e events

NAME spe
i�
 fen
e events those depend on the test ar
hite
ture

ar
hite
ture fen
e sets

X86 MFENCE, SFENCE, LFENCE

PPC SYNC, LWSYNC, EIEIO, ISYNC

ARM DMB, DMB.ST, DSB, DSB.ST, ISB

MIPS SYNC

AAr
h64 . . .

always upper
ase and derive from the mnemoni
 of the instru
tion that generates them. The se
ond table

of �gure 6 shows a (non-exhaustive) list.

Other pre-de�ned identi�ers are relations. Most of those are the program order po and its re�nements:

79

identi�er name des
ription

po program order instru
tion order lifted to events

addr address dependen
y the address of the se
ond event depends on the value

loaded by the �rst (read) event

data data dependen
y the value stored by the se
ond (write) event depends

on the value loaded by the �rst (read) event

trl
ontrol dependen
y the se
ond event is in a bran
h
ontroled by the value

loaded by the
omm�rst (read) event

rmw read-ex
lusive write-

ex
lusive pair

relate the read and write events emitted by mat
hing

su

essful load-reserve store
onditional instru
tions.

Finally, a few pre-de�ned relations des
ribe the exe
ution
andidate stru
ture and write-to-read
ommu-

ni
ation:

identi�er name des
ription

id identity relates ea
h event to itself

lo
 same lo
ation events that tou
h the same address

ext external events from di�erent threads

int internal events from the same thread

rf read-from links a write w to a read r taking its value from w

Some additional relations are de�ned by library �les written in the
at language, see Se
. 14.7.

80

14.3 Expressions

Expressions are evaluated by herd7, yielding a value.

expr ::= 0

| id

| tag

| () | (expr , expr {, expr})
| { } | { expr {, expr} }
| expr * | expr + | expr ? | expr ^-1
| ~ expr

| [expr ℄

| expr | expr | expr ++ expr | expr ; expr | expr \ expr | expr & expr | expr * expr

| expr expr

| fun pat -> expr

| let [re
] binding {and binding} in expr

| mat
h expr with
lauses end

| (expr) | begin expr end

| instru
tions id [taglist℄

tag ::= ' id

taglist ::= tag, taglist

pat ::= id | () | (id {, id})

binding ::= valbinding | funbinding

valbinding ::= id = expr

funbinding ::= id pat = expr

lauses ::= tag
lauses | set
lauses

tag
lauses ::= [||] tag -> expr {|| tag -> expr} [_ -> expr]

set
lauses ::= [||] { } -> expr || id ++ id -> expr

Simple expressions

Simple expressions are the empty relation (keyword 0), identi�ers id and tags tag . Identi�ers are bound to

values, either before the exe
ution (see pre-de�ned identi�ers in Se
. 14.2), or by the model itself. Tags are

onstants similar to C enum values or OCaml
onstant
onstru
tors. Tags must be de
lared with the enum

instru
tion. We go ba
k to enum and tags in Se
. 14.4 and ??.

Tuples

Tuples in
lude a
onstant, the empty tuple (), and
onstru
ted tuples (expr1 , expr1 , . . . , exprn), with

n ≥ 2. In other words there is no tuple of size one. Syntax (expr) denotes grouping and has the same

value as expr.

Expli
it sets of values

Expli
it sets are written as the
omma separated list of their elements between
urly bra
es: { expr1 , expr1 , . . . , exprn },

with n ≥ 0. As events are not values, one
annot build a set of events using expli
it set expressions. However,

81

by ex
eption, the empty set { } also is the empty set of events and the empty relation. Sets are homogenous,

in the sense that sets hold elements of the same type.

Operator expressions

The transitive and re�exive-transitive
losure of an expression are performed by the post�x operators +

and * . The post�x operator ^-1 performs relation inversion. The
onstru
t expr ? (option) evaluates

to the union of expr value and of the identity relation. Noti
e that post�x operators operate on relations

only.

There is one pre�x operator ~ that performs relation and set
omplement.

Finally, there is one last unary operator: [expr ℄ that evaluate expr to an event set and returns the

identity relation over this set.

In�x operators are | (union), ++ (set addition), ; (sequen
e), & (interse
tion), \ (set

di�eren
e), and * (
artesian produ
t). In�x operators are listed in order of de
reasing pre
eden
e, while

post�x and pre�x operators bind tighter than in�x operators. All in�x operators are right-asso
iative, ex
ept

set di�eren
e whi
h is left-asso
iative, and
artesian produ
t whi
h is non-asso
iative.

The union, interse
tion and di�eren
e operators apply to relations and all kinds of sets. The addition

operator expr1 ++ expr2 operates on sets: the value of expr2 must be a set of values S and the operator

returns the set S augmented with the value of expr1.

For the re
ord, given two relations r1 and r2, the sequen
e r1; r2 is de�ned as {(x, y) | ∃z, (x, z) ∈
r1 ∧ (z, y) ∈ r2}.

Fun
tion
alls

Fun
tions
alls are written expr1 expr2. That is, fun
tions are of arity one and the appli
ation operator is

left impli
it. Noti
e that fun
tion appli
ation binds tighter than all binary operators and looser that post�x

operators. Furthermore the impli
it appli
ation operator is left-asso
iative.

The
at language has
all-by-value semanti
s. That is, the e�e
tive parameter expr2 is evaluated before

being bound to the fun
tion formal parameter(s).

N-ary fun
tions
an be en
oded either using tuples as arguments or by
urry�
ation (i.e. as fun
-

tions that return fun
tions). Considering binary fun
tions, in the former
ase, a fun
tion
all is written

expr1 (expr2 , expr3); while in the latter
ase, a fun
tion
all is written expr1 expr2 expr3 (whi
h by

left-asso
iativity, is to be understood as (expr1 expr2) expr3). The two forms of fun
tion
all are not

inter
hangeable, using one or the other depends on the de�nition of the fun
tion.

Fun
tions

Fun
tions are �rst
lass values, as re�e
ted by the anonymous fun
tion
onstru
t fun pat -> expr. A fun
tion

takes one argument only.

In the
ase where this argument is a tuple, it may be destru
tured by the means of a tuple pattern. That

is pat above is (id1 , . . . idn). For instan
e here is a fun
tion that takes a tuple of relations (or sets) as

argument and return their symmetri
 di�eren
e:

fun (a,b) -> (a\b)|(b\a)

Fun
tions have the usual stati
 s
oping semanti
s: variables that appear free in fun
tion bodies (expr

above) are bound to the value of su
h free variable at fun
tion
reation time. As a result one may also write

the symmetri
 di�eren
e fun
tion as follows:

fun a -> fun b -> (a\b)|(b\a)

82

Lo
al bindings

The lo
al binding
onstru
t let [re
]bindings in expr binds the names de�ned by bindings for evaluating the

expression expr . Both non-re
ursive and re
ursive bindings are allowed. The fun
tion binding id pat = expr

is synta
ti
 sugar for id = fun pat -> expr.

The
onstru
t

let pat1 = expr1 and . . . and patn = exprn in expr

evaluates expr1, . . . , exprn, and binds the names in the patterns pat1, . . . , patn to the resulting values. The

bindings for pat=expr are as follows: if pat is () , then expr must evaluate to the empty tuple; if pat

is id or (id), then id is bound to the value of expr; if pat is a proper tuple pattern (id1 , . . . ,idn) with

n ≥ 2, then expr must evaluate to a tuple value of size n (v1, . . . , vn) and the names id1, . . . , idn are bound

to the values v1, . . . , vn.
The
onstru
t

let re
 pat1 = expr1 and . . . and patn = exprn in expr

omputes the least �xpoint of the equations pat1 = expr1,. . . , patn = exprn. It then binds the names in the

patterns pat1, . . . , patn to the resulting values. The least �xpoint
omputation applies to set and relation

values, (using in
lusion for ordering); and to fun
tions (using the usual de�nition ordering).

Pattern mat
hing over tags

The syntax for pattern mat
hing over tags is:

mat
h expr with tag1 -> expr1 || · · · || tagn -> exprn || _ -> exprd end

The value of the mat
h expression is
omputed as follow: �rst evaluate expr to some value v, whi
h must be

a tag t. Then v is
ompared with the tags tag1, . . . , tagn, in that order. If some tag pattern tagi equals t,
then the value of the mat
h is the value of the
orresponding expression expri. Otherwise, the value of the

mat
h is the value of the default expression exprd. As the default
lause _ -> exprd is optional, the mat
h

onstru
t may fail.

Pattern mat
hing over sets

The syntax for pattern mat
hing over sets is:

mat
h expr with { } -> expr1 || id1 ++ id2 -> expr2 end

The value of the mat
h expression is
omputed as follow: �rst evaluate expr to some value v, whi
h must

be a set of values. If v is the empty set, that the value of the mat
h is the value of the
orresponding

expression expr1. Otherwise, v is a non-empty set, then let ve be some element in v and vr be the set v
minus the element ve. The value of the mat
h is the value of expr2 in a
ontext where id1 is bound to ve
and id2 is bound to vr.

Parenthesised expressions

The expression (expr) has the same value as expr. Noti
e that a parenthesised expression
an also be

written as begin expr end.

83

14.4 Instru
tions

Instru
tion are exe
uted for their e�e
t. There are three kinds of e�e
ts: adding new bindings,
he
king a

ondition, and spe
ifying relations that are shown in pi
tures.

instru
tion ::= let [re
] binding {and binding}
| [flag]
he
k expr [as id]
| enum id = [|| tag {|| tag}
| pro
edure id pat = {instru
tion} end
|
all id expr [as id]
| show expr as id

| show id {, id}
| unshow id {, id}
| forall id in expr do {instru
tion} end
| with id from expr

| in
ludestring

he
k ::=
he
kname | ~
he
kname

he
kname ::= a
y
li
 | irreflexive | empty

Bindings

The let and let re

onstru
ts bind value names for the rest of model exe
ution. See the subse
tion

on bindings in Se
tion 14.3 for additional information on the syntax and semanti
s of bindings.

Re
ursive de�nitions
omputes �xpoints of relations. For instan
e, the following fragment
omputes the

transitive
losure of all
ommuni
ation relations:

let
om = rf |
o | fr

let re

omplus =
om | (
omplus ;
omplus)

Noti
e that the instru
tion let
omplus = (rf|
o|fr)+ is equivalent. Noti
e that herd7 assumes that

re
ursive de�nitions are well-formed, i.e. that they yield an in
reasing fun
tional. The result of ill-formed

de�nitions is unde�ned.

Although herd7 features re
ursive fun
tions, those
annot be used to
ompute a transitive
losure, due

to the la
k of some
onstru
t say to test relation equality. Nevertheless, one
an write a generi
 transitive

losure fun
tion by using a lo
al re
ursive binding:

let tr(r) = let re
 t = r | (t;t) in t

Again, noti
e that the instru
tion let tr (r) = r+ is equivalent.

Thanks to pattern mat
hing
onstru
ts, re
ursive fun
tions are useful to
ompute over sets (and tags).

For instan
e here is the de�nition of a fun
tion power that
ompute power sets:

let re
 power S = mat
h S with

|| {} -> { {} }

|| e ++ S ->

let re
 add_e RR = mat
h RR with

|| {} -> { }

|| R + RR -> R ++ (e ++ R) ++ add_e RR

end in

add_e (power S)

end

84

Che
ks

The
onstru
t

he
k expr

evaluates expr and applies the
he
k
he
k. There are six
he
ks: the three basi
 a
y
li
ity (keyword

a
y
li
), irre�exivity (keyword irreflexive) and emptyness (keyword empty); and their negations.

If the
he
k su

eeds, exe
ution goes on. Otherwise, exe
ution stops.

The performan
e of a
he
k
an optionally be named by appending as id after it. The feature permits

not to perform some
he
ks at user's will, thanks to the -skip
he
ks id
ommand line option.

A
he
k
an also be �agged, by pre�xing it with the flag keyword. Flagged
he
ks must be named

with the as
onstru
t. Failed �agged
he
ks do not stop exe
ution. Instead su

essful �agged
he
ks

are re
orded under their name, for herd7 ma
hinery to handle �agged exe
utions later. Flagged
he
ks are

useful for models that de�ne
onditions over exe
utions that impa
t the semanti
s of the whole program.

This is typi
ally the
ase of data ra
es. Let us assume that some relation ra
e has been de�ned, su
h that

an non-empty ra
e relation in some exe
ution would make the whole program unde�ned. We would then

write:

flag ~empty ra
e as undefined

Then, herd7 will indi
ate in its output that some exe
ution have been �agged as undefined.

Pro
edure de�nition and
all

Pro
edures are similar to fun
tions ex
ept that they have no results: the body of a pro
edure is a list of

instru
tions and the pro
edure will be
alled for the e�e
t of exe
uting those instru
tions. Intended usage

of pro
edures is to de�ne
he
ks that are exe
uted later. However, the body of a pro
edure may
onsist in

any kind of instru
tions. Noti
e that pro
edure
alls
an be named with the as keyword. The intention is

to
ontrol the performan
e of pro
edure
alls from the
ommand line, exa
tly as for
he
ks (see above).

As an example of pro
edure, one may de�ne the following unipro
 pro
edure with no arguments:

pro
edure unipro
() =

let
om = fr | rf |
o in

a
y
li

om | po

end

Then one
an perform the a
y
li
ity
he
k (see previous se
tion) by exe
uting the instru
tion:

all unipro
()

As a result the exe
ution will stop if the a
y
li
ity
he
k fails, or
ontinue otherwise.

Pro
edures are lexi
ally s
oped as fun
tions are. Additionally, the bindings performed during the exe
u-

tion of a pro
edure
all are dis
arded when the pro
edure returns, all other e�e
ts performed (namely �ags

and shows) are retained.

Show (and unshow) dire
tives

The
onstru
ts:

show id {, id} and unshow id {, id}

take (non-empty,
omma separated) lists of identi�ers as arguments. The show
onstru
t adds the present

values of identi�ers for being shown in pi
tures. The unshow
onstru
t removes the identi�ers from shown

relations.

The more sophisti
ated
onstru
t

show expr as id

evaluates expr to a relation, whi
h will be shown in pi
tures with label id. Hen
e showid
an be viewed as

a shorthand for showid asid

85

Iteration over sets

The forall iteration
onstru
t permits the iteration of
he
ks (in fa
t of any kind of instru
tions) over a

set. Syntax is:

forall

id

in

expr

do

instru
tions

end

The expression expr must evaluate to a set S. Then, the list of instru
tions instru
tions is exe
uted for all

bindings of the name id to some element of S. In pra
ti
e, as failed
he
ks stop exe
ution, this amounts

to
he
k the
onjun
tion of the
he
ks performed by instru
tions for all the elements of S. Similarly to

pro
edure
alls, the bindings performed during the exe
ution of an iteration are dis
arded at iteration ends,

all other e�e
ts performed are retained.

Candidate exe
ution extension

This
onstru
t permits the extension of the
urrent
andidate exe
ution by one binding. Syntax is with id from expr.

The expression expr is evaluated to a set S. Then the remainder of the model is exe
uted for ea
h
hoi
e of

element e in S in a
ontext extended by a binding of the name id to e. An example of the
onstru
t usage

is des
ribed in Se
. 12.3.

Model in
lusion

The
onstru
t in
lude "�lename " is interpreted as the in
lusion of the model
ontained in the �le whose

name is given as an argument to the in
lude instru
tion. In pra
ti
e the list of intru
tions de�ned by the

in
luded model �le are exe
uted. The string argument is delimited by double quotes �"�, whi
h, of
ourse,

are not part of the �lename. Files are sear
hed a

ording to herd7 rules � see Se
. 15.4.

Bell extensions

Users
an attain more generi
ity in their models by de�ning a bell �le, as an addendum, or rather preamble,

to a
at �le.

Enumerations

The enum
onstru
t de�nes a set of enumerated values or tags. Syntax is

enum id = tag1 || · · · || tagn

The
onstru
t has two main e�e
ts. It �rst de�nes the tags tag1, . . . , tagn. Noti
e that tags do not exist

before being de�ned, that is evaluating the expression tag is an error without a prior enum that de�nes

the tag tag. Tags are typed in the sense that they belong to the tag type id and that tags from di�erent

types
annot be members of the same set. The se
ond e�e
t of the
onstru
t is to de�ne a set of tags id

as the set of all tags listed in the
onstru
t. That is, the enum
onstru
t performs the binding of id to

{tag1, . . . , tagn}.

S
opes are a spe
ial
ase of enumeration: the
onstru
t enum s
opes must be used to de�ne hierar
hi
al

models su
h as Nvidia GPUs.

86

An enum s
opes de
laration must be paired with two fun
tions narrower and wider that implement the

hierar
hy amongst s
opes. For example:

enum s
opes = 'dis
ography || 'I || 'II || 'III || 'IV

let narrower(t) = mat
h t with

|| 'dis
ography -> {'I, 'II, 'III, 'IV}

end

let wider(t) = mat
h t with

|| 'I -> 'dis
ography

|| 'II -> 'dis
ography

|| 'III -> 'dis
ography

|| 'IV -> 'dis
ography

end

Here we de�ne �ve s
opes, where the �rst one, dis
ography, is wider than all the other ones.

Instru
tions

The prede�ned sets of events W, R, RMW, F, and B
an be annotated with user-de�ned tags (see Se
. 14.4).

The
onstru
ts:

instru
tions

id

[taglist℄

take the identi�er of a pre-de�ned set and a possibly empty, square bra
keted list of tags.

The primitive tag2instrs yields, given a tag 't, the set of instru
tions bearing the annotation t that

was previously de
lared in an enumeration type.

The primitive tag2s
ope yields, given a tag 't, the relation between instru
tions TODO

14.5 Models

model ::= model-
omment instru
tion}

model-
omment ::= id | string

A model is a list of instru
tion pre
eded by a small
omment, whi
h
an be either a name that follows herd7

onventions for identi�ers, or a string en
losed in double quotes �"�.

Models operate on
andidate exe
utions (see Se
. 14.2), instru
tions are exe
uted in sequen
e, until one

instru
tion stops, or until the end of the instru
tion list. In that latter
ase, the model a

epts the exe
ution.

The a

epted exe
ution is then passed over to the rest of herd7 engine, in order to
olle
t �nal states of

lo
ations and to display pi
tures.

14.6 Primitives

TODO:

87

14.7 Library

Standard library

The standard library is a
at �le stdlib.
at whi
h all models in
lude by default. It de�nes a a few

onvenient relations that are thus available to all models.

identi�er name des
ription

po-lo
 po restri
ted to the

same address

events are in po and tou
h the same address, namely

po ∩ lo

rfe external read-from read-from by di�erent threads, namely rf ∩ ext

rfi internal read-from read-from by the same thread, namely rf ∩ int

Coheren
e orders

For most models, a
omplete list of
ommuni
ation relations would also in
lude
o and fr. Those
an be

de�ned by in
luding the �le
os.
at (see Se
. 12.4).

identi�er name des
ription

o
oheren
e total order over writes to the same address

fr from-read links a read r to a write w′

o-after the write w from

whi
h r takes its value

oi, fri internal
ommuni
a-

tions

ommuni
ation between events of the same thread

oe, fre external
ommuni
a-

tions

ommuni
ation between events of di�erent threads

Noti
e that the internal and external sub-relations of
o and fr are also de�ned.

Fen
es

Fen
e relations denote the presen
e of a spe
i�
 fen
e (or barrier) in-between two events. Those
an be

de�ned by in
ludin
 ar
hite
ture spe
i�
 �les.

�le relations

x86fen
es.
at mfen
e, sfen
e, lfen
e

pp
fen
es.
at syn
, lwsyn
, eieio, isyn
,
trlisyn

armfen
es.
at dsb, dmb, dsb.st, dmb.st, isb,
trlisb

mipsfen
es.
at syn

aar
h64fen
es.
at . . .

In other words, models for, say, ARM ma
hines should in
lude the following instru
tion:

in
lude "armfen
es.
at"

Noti
e that for the Power (PPC) (resp. ARM) ar
hite
ture, an additional relation
trlisyn
 (res.

trlisb) is de�ned. The relation
trlisyn
 reads
ontrol +isyn
. It means that the bran
h to the

instru
tion that generates the se
ond event additionnaly
ontains a isyn
 fen
e pre
eeding that instru
tion.

For referen
e, here is a possible de�nition of
trlisyn
:

let
trlisyn
 =
trl & (_ * ISYNC); po

One may de�ne all fen
e relations by in
luding the �le fen
es.
at. As a result, fen
e relations that are

relevant to the ar
hite
ture of the test being simulated are properly de�ned, while irrelevant fen
e relations

are the empty relation. This feature proves
onvenient for writing generi
 models that apply to several

on
rete ar
hite
tures.

88

15 Usage of herd7

15.1 Arguments

The
ommand herd7 handles its arguments like litmus7. That is, herd7 interprets its argument as �le names.

Those �les are either a single litmus test when having extension .litmus, or a list of �le names when pre�xed

by �.

15.2 Options

There are many
ommand line options. We des
ribe the more useful ones:

General behaviour

-version Show version number and exit.

-libdir Show installation dire
tory and exit.

-v Be verbose,
an be repeated to in
rease verbosity.

-q Be quiet, suppress any diagnosti
 message.

-
onf <name> Read
on�guration �le name. Con�guration �les have a very simple syntax: a line �opt arg�

has the same e�e
t as the
ommand-line option �-opt arg�.

-o <dest> Output �les into dire
tory <dest>. Noti
e that <dest> must exist. At the moment herd7 may

output one .dot �le per pro
essed test: the �le for test base.litmus is named base.dot. By default

herd7 does not generate .dot �les.

-suffix <suf> Change the name of .dot �les into basesu� .dot. Useful when several .dot �les derive from

the same test. Default is the empty string (no su�x).

-gv Fork the gv Posts
ript viewer to display exe
ution diagrams.

-evin
e Fork the evin
e do
ument viewer to display exe
ution diagrams. This option provides an alternative

to the gv viewer.

-dumpes <bool> Dump genererated event stru
tures and exit. Default is false. Event stru
tures will be

dumped in a .dot �le whose name is determined as usual � See options -o and -suffix above.

Optionally the event stru
tures
an be displayed with the -gv option.

-unroll <int> The setting -unroll n performs ba
kwards jumps n times. This is a workaround for one

of herd7 main limitation: herd7 does not really handle loops. Default is 2.

-hexa <bool> Print numbers in hexade
imal. Default is false (numbers are printed in de
imal).

Engine
ontrol The main purpose of herd7 is to run tests on top of memory models. For a given test,

herd7 performs a three stage pro
ess:

1. Generate
andidate exe
utions.

2. For ea
h
andidate exe
ution, run the model. The model may reje
t or a

ept the exe
ution.

3. For ea
h
andidate exe
ution that the model a

epts, re
ord observed lo
ations and, if so instru
ted,

a diagram of the exe
ution.

We now des
ribe options that
ontrol those three stages.

89

-model (
av12|minimal|unipro
|<filename>.
at) Sele
t model, this option a

ept one tag or one �le

name with extension .
at. Tags instru
t herd7 to sele
t an internal model, while �le names are read

for a model de�nition. Do
umented model tags are:

•
av12, the model of [4℄ (Power);

• minimal, the minimal model that allows all exe
utions;

• unipro
, the unipro
 model that
he
ks single-thread
orre
tness.

In fa
t, herd7 a

epts potentially in�nitely many models, as models
an given in text �les in an

adho
 language des
ribed in Se
. 14. The herd7 distribution in
ludes several su
h models: herd.
at,

minimal.
at, unipro
.
at and x86tso.
at are text �le versions of the homonymous internal models,

but may produ
e pi
tures that show di�erent relations. Model �les are sear
hed a

ording to the

same rules as
on�guration �les. Some ar
hite
tures have a default model: arm.
at model for ARM,

pp
.
at model for PPC, x86tso.
at for X86, and mips-pso.
at for MIPS.

-through (all|invalid|none) Let additional exe
utions rea
h the �nal stage of herd7 engine. This option

permits users to generate pi
tures of forbidden exe
utions, whi
h are otherwise reje
ted at an early

stage of herd7 engine � see Se
. 13.2. Namely, the default �none� let only valid (a

ording to the

a
tive model) exe
utions through. The behaviour of this option di�ers between internal and text �le

models:

• For internal models: the tag all let all exe
utions go through; while the tag invalid will reje
t

exe
utions that violate unipro
, while letting other forbidden exe
ution go through.

• Text �le models: the tags all and invalid let all exe
utions go through. For su
h models,

a more pre
ise
ontrol over exe
utions that rea
h herd7 �nal phase
an be a
hieved with the

option -skip
he
k � see next option.

Default is none.

-skip
he
ks <name 1,...,namen> This option applies to text �le models. It instru
ts herd7 to ignore the

out
omes of the given
he
ks. For the option to operate,
he
ks must be named in the model �le with

the as name
onstru
t � see Se
. 14.4. Noti
e that the arguments to -skip
he
k options
umulate.

That is, �-skip
he
k name1 -skip
he
k name2� a
ts like �-skip
he
k name1,name2�.

-stri
tskip <bool> Setting this option (-stri
tskip true), will
hange the behaviour of the previous

option -skip
he
k: it will let exe
utions go through when the skipped
he
ks yield false and the

unskipped
he
ks yield true. This option
omes handy when one want to observe the exe
utions that

fail one (or several)
he
ks while passing others. Default is false.

-opta
e <bool> Optimise the axiomati

andidate exe
ution stage. When enabled by -opta
e true, herd7

does not generate
andidate exe
utions that fail the unipro
 test. The default is �true� for internal

models (ex
ept the minimal model), and �false� for text �le models. Noti
e that -model unipro
.
at

and -model minimal.
at -opta
e true should yield identi
al results, the se
ond being faster. Set-

ting -opta
e true
an lower the exe
ution time signi�
antly, but one should pay attention not to

design models that forget the unipro

ondition.

-show (prop|neg|all|
ond|wit|none) Sele
t exe
ution diagrams for pi
ture display and generation. Ex-

e
ution diagrams are shown a

ording to the �nal
ondition of test. The �nal
ondition is a quanti�ed

boolean proposition exists p, ~exists p, or forall p. The semanti
s of re
ognised tags is as follows:

• prop Pi
ture exe
utions for whi
h p is true.

• neg Pi
ture exe
utions for whi
h p is false.

• all Pi
ture all exe
utions.

90

•
ond Pi
ture exe
utions that validate the
ondition, i.e. p is true for exists and forall, and

false for ~exists.

• wit Pi
ture �interesting� exe
utions, i.e. p is true for exists and ~exists, and false for forall.

• none Pi
ture no exe
ution.

Default is none.

-initwrites <bool> Represent init writes as plain write events, default is false ex
ept for spe
i�
ally

tagged generi
 models � see �Model options� in Se
. 14.5.

Dis
ard some observations Those options intentionally omit some of the �nal states that herd7 would

normally generate.

-speed
he
k (false|true|fast) When enabled by -speed
he
k true or -speed
he
k fast, attempt to

settle the test
ondition. That is, herd7 will generate a subset of exe
utions (those named �interesting�

above) in pla
e of all exe
utions. With setting -speed
he
k fast, herd7 will additionally stop as soon

as a
ondition exists p is validated, and as soon as a
ondition ~exists p or forall p is invalidated.
Default is false.

-nshow <int> Stop on
e <int> pi
tures have been
olle
ted. Default is to
olle
t all (spe
i�ed, see option

-show) pi
tures.

Control dot pi
tures These options
ontrol the
ontent of DOT images.

We �rst des
ribe options that a
t at the general level.

-graph (
luster|free|
olumns) Sele
t main mode for graphs. See Se
. 13.1. The default is
luster.

-dotmode (plain|fig) The setting -dotmode fig produ
es output that in
ludes the proper es
ape se-

quen
e for translating .dot �les to .fig �les (e.g. with dot -Tfig...). Default is plain.

-dot
om (dot|neato|
ir
o) Sele
t the
ommand that formats graphs displayed by the -gv option. The

default is dot for the
luster and free graph modes, and neato for the
olumns graph mode.

-showevents (all|mem|noregs) Control whi
h events are pi
tured:

• all Pi
ture all events.

• mem Pi
ture memory events.

• noregs Pi
ture all events ex
ept register events, i.e. memory, fen
es and bran
h events.

Default is noregs.

-showinitwrites <bool> Show initial write events (when existing, see option -initwrites) in pi
tures. De-

fault is true.

-mono <bool> The setting -mono true
ommands mono
hrome pi
tures. This option a
ts upon default

olor sele
tion. Thus, it has no e�e
t on
olors given expli
itely with the -edgeattr option.

-s
ale <float> Global s
ale fa
tor for graphs in
olumns mode. Default is 1.0.

-xs
ale <float> Global s
ale fa
tor for graphs in
olumns mode, x dire
tion. Default is 1.0.

-ys
ale <float> Global s
ale fa
tor for graphs in
olumns mode, y dire
tion. Default is 1.0.

-showthread <bool> Show thread numbers in �gures. In
luster mode where the events of a thread are

lustered, thread
luster have a label. In free mode po edges are su�xed by a thread number. In

olumns mode,
olumhs have a header node that shows the thread number. Default is true.

91

-texma
ros <bool> Use latex
ommands in some text of pi
tures. If a
tivated (-showthread true),

thread numbers are shown as \myth{n}. Assembler instru
tions are lo
ations in nodes are argu-

ment to an \asm
ommand. It user responsability to de�ne those
ommands in their L

A

T

E

X do
u-

ments that in
lude the pi
tures. Possible de�nitions are \new
ommand{\myth}[1℄{Thread~#1} and

\new
ommand{\asm}[1℄{\texttt{#1}}. Default is false.

A few options
ontrol pi
ture legends.

-showlegend <bool> Add a legend to pi
tures. By default legends show the test name and a
omment from

the exe
uted model. This
omment is the �rst item of model syntax � see Se
 14.5. Default is true.

-showkind <bool> Show test kind in legend. The kind derive from the quanti�er of test �nal
ondition, kind

Allow being exists, kind Forbid being ~exists, and kind Require being forall. Default is false.

-shortlegend <bool> Limit legend to test name. Default is false.

A few options
ontrol what is shown in nodes and on their sizes, i.e. on how events are pi
tured.

-squished <bool> The setting -squished true drasti
ally limits the information displayed in graph nodes.

This is usually what is wanted in modes free and
olumns. Default is false.

-fixedsize <bool> This setting is meaningfull in
olumns graph mode and for squished nodes. When set

by -fixedsize true it for
es node width to be 65% of the spa
e between
olumns. This may sometime

yield a ni
e edge routing. Default is false

-extra
hars <float> This setting is meaningful in
olumns graph mode and for squished nodes. When

the size of nodes is not �xed (i.e. -fixedsize false and default), herd7
omputes the width of nodes

by
ounting
ara
ters in node labels and s
aling the result by the font size. The setting -extra
hars v

ommands adding the value v before s
aling. Negative values are of
ourse a

epted. Default is 0.0.

-showobserved <bool> Highlight observed memory read events with stars �*�. A memory read is observed

when the value it reads is stored in a register that appears in �nal states. Default is false.

-bra
kets <bool> Show bra
kets around lo
ations. Default is false.

Then we list options that o�er some
ontrol on whi
h edges are shown. We re
all that the main
ontrols

over the shown and unshown edges are the show and unshow dire
tives in model de�nitions � see Se
. 14.4.

However, some edges
an be
ontroled only with options (or
on�guration �les) and the -unshow option

proves
onvenient.

-showpo <bool> Show program order (po) edges. Default is true. Default is false.

-showinitrf <bool> Show read-from edges from initial state. Default is false.

-showfinalrf <bool> Show read-from edges to the �nal state, i.e show the last store to lo
ations. Default

is false. i.e show the last store to lo
ations. Default is false.

-showfr <bool> Show from-read edges. Default is true.

-doshow <name 1,...,namen> Do show edges labelled with name1,. . . ,namen. This setting applies when

names are bound in model de�nition.

-unshow <name 1,...,namen> Do not show edges labelled with name1,. . . ,namen. This setting applies at

the very last momement and thus
an
els any show dire
tive in model de�nition and any -doshow

ommand line option.

92

Other options o�er some
ontrol over some of the attributes de�ned in Graphviz software do
umentation.

Noti
e that the
ontrolled attributes are omitted from DOT �les when no setting is present. For instan
e

in the absen
e of a -spline <tag> option, herd7 will generate no de�nition for the splines attribute thus

resorting to DOT tools defaults. Most of the following options a

ept the none argument that restores their

default behaviour.

-splines (spline|true|line|false|polyline|ortho|
urved|none) De�ne the value of the splines at-

tribute. Tags are repli
ated in output �les as the value of the attribute, ex
ept for none.

-margin <float|none> Spe
i�es the margin attribute of graphs.

-pad <float|none> Spe
i�es the pad attribute of graphs.

-sep <string|none> Spe
i�es the sep attribute of graphs. Noti
e that the argument is an arbitray string,

so as to allow DOT general syntax for this attribute.

-fontname <string|none> Spe
i�es the graph fontname attribute.

-fontsize <int|none> Spe
i�es the fontsize attribute n of all text in the graph.

-edgefontsizedelta <int> option -edgefontsizedelta m sets the fontsize attributes of edges to n+m,

where n is the argument to the -fontsize option. Default is 0. This option has no e�e
t if fontsize is

unset.

-penwidth <float|none> Spe
i�es the penwidth attribute of edges.

-arrowsize <float|none> Spe
i�es the arrowsize attribute of edges.

-edgeattr <label,attribute,value> Give value value to attribute attribute of all edges labelled label.

This powerful option permits alternative styles for edges. For instan
e, the ghb edges of the di-

agrams of this do
ument are thi
k purple (blueviolet) arrows thanks to the settings: -edgeattr

ghb,
olor,blueviolet -edgeattr ghb,penwidth,3.0 -edgeattr ghb,arrowsize,1.2. Noti
e that

the settings performed by the -edgeattr option override other settings. This option has no default.

Change input Those options are the same as the ones of litmus7 � see Se
. 4.

-names <file> Run herd7 only on tests whose names are listed in <file>.

-rename <file> Change test names.

-kinds <file> Change test kinds. This amonts to
hanging the quanti�er of �nal
onditions, with kind

Allow being exists, kind Forbid being ~exists and kind Require being forall.

-
onds <file> Change the �nal
ondition of tests. This is by far the most useful of these options: in

ombination with option -show prop it permits a �ne grain sele
tion of exe
ution pi
tures.

15.3 Con�guration �les

The syntax of
on�guration �les is minimal: lines �key arg� are interpreted as setting the value of parame-

ter key to arg. Ea
h parameter has a
orresponding option, usually -key, ex
ept for the single letter option

-v whose parameter is verbose.

As
ommand line option are pro
essed left-to-right, settings from a
on�guration �le (option -
onf)
an

be overridden by a later
ommand line option. Con�guration �les will be used mostly for
ontroling pi
tures.

Some
on�guration �les are are present in the distribution. As an example, here is the
on�guration �le

apoil.
fg, whi
h
an be used to display images in free mode.

93

#Main graph mode

graph free

#Show memory events only

showevents memory

#Minimal information in nodes

squished true

#Do not show a legend at all

showlegend false

The
on�guration above is
ommented with line
omments that starts with �#�. The above
on�guration

�le
omes handy to eye-proof model output, even for relatively
omplex tests, su
h as IRIW+lwsyn
s and

IRIW+syn
s:

% herd7 -
onf apoil.
fg -show prop -gv IRIW+lwsyn
s.litmus

% herd7 -through invalid -
onf apoil.
fg -show prop -gv IRIW+syn
s.litmus

We run the two tests on top of the default model that
omputes, amongst others, a prop relation. The model

reje
ts exe
utions with a
y
li
 prop. One
an then see that the relation prop is a
y
li
 for IRIW+lwsyn
s

and
y
li
 for IRIW+syn
s:

94

iy:Wy=0

: Ry=0

d: Wy=1

ix:Wx=0

a: Wx=1

f: Rx=0

b: Rx=1

e: Ry=1

rf

o

o

rf

rf

po:1 lwsyn

fr

rf

po:3 lwsyn

fr

95

iy:Wy=0

: Ry=0

d: Wy=1

ix:Wx=0

a: Wx=1

f: Rx=0

b: Rx=1

e: Ry=1

rf

o

o

rf

rf

po:1 syn

fr

rf

po:3 syn

fr

Noti
e that we used the option -through invalid in the
ase of IRIW+syn
s as we would otherwise have

no image.

15.4 File sear
hing

Con�guration and model �les are sear
hed �rst in the
urrent dire
tory; then in any dire
tory spe
i�ed by

setting the shell environment variable HERDDIR; and then in herd installation dire
tory, whi
h is de�ned while

ompiling herd7.

96

Part IV

Some examples

In the following experiment reports we des
ribe both how we generate tests and how we run them on various

ma
hines under various
onditions.

16 Running several tests at on
e,
hanging
riti
al parameters

In this se
tion we des
ribe an experiment on
hanging the stride (
f Se
. 2.1). This usage pattern applies to

many situations, where a series of test is
ompiled on
e and run many times under
hanging
onditions.

We assume a dire
tory tst-x86, that
ontains a series of litmus tests and an index �le �all. Those

tests where produ
ed by the diy7 tool (see Se
. 6). They are two thread tests that exer
ise various relaxed

behaviour of x86 ma
hines. More spe
i�
ally, diy7 is run as �diy -
onf X.
onf�, where X.
onf is the

following
on�guration �le

-ar
h X86

-name X

-safe Rfe,Fre,Wse,PodR*,PodWW,MFen
edWR

-relax PodWR,[Rfi,PodRR℄

-mix true

-mode
riti
al

-size 5

-npro
s 2

As des
ribed in Se
. 10.5, diy7 will generate all
riti
al
y
les of size at most 5, built from the given lists

of
andidate relaxations, spanning other two threads, and in
luding at least one o

urren
e of PodWR,

[R�,PodRR℄ or both. In e�e
t, as x86 ma
hines follow the TSO model that relaxes write to read pairs, all

produ
ed tests should a priori validate.

We test some x86-64 ma
hine, using the following x86-64.
fg litmus7
on�guration �le:

#Ma
hine/OS spe
ifi
ation

os = linux

word = w64

#Test parameters

size_of_test = 1000

number_of_run = 10

memory = dire
t

stride = 1

The number of available logi
al pro
essors is unspe
i�ed, it thus defaults to 1, leading to running one instan
e
of the test only (
f parameter a in Se
. 2.1)

We invoke litmus7 as follows, where run is a pre-existing empty dire
tory:

% litmus7 -ma
h x86-64 -o run tst-x86/�all

The dire
tory run now
ontains C-sour
e �les for the tests, as well as some additional �les:

% ls run

omp.sh outs.
 README.txt utils.
 X000.
 X002.
 X004.
 X006.

Makefile outs.h run.sh utils.h X001.
 X003.
 X005.

One noti
es a short README.txt �le, two s
ripts to
ompile (
om.sh) and run the tests (run.sh), and a

Makefile. We use the latter to build test exe
utables:

97

%
d run

% make -j 8

g

 -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -O2 -
 outs.

g

 -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -O2 -
 utils.

g

 -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -S X000.

...

g

 -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -o X005.exe outs.o utils.o X005.s

g

 -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -o X006.exe outs.o utils.o X006.s

rm X005.s X004.s X006.s X000.s X001.s X002.s X003.s

This builds the seven tests X000.exe to X006.exe. The size parameters (size_of_test = 1000 and

number_of_run = 10) are rather small, leading to fast tests:

% ./X000.exe

Test X000 Allowed

Histogram (2 states)

5000 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

5000 :>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

No

...

Condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) is NOT validated

...

Observation X000 Never 0 10000

Time X000 0.01

However, the test fails, in the sense that the relaxed out
ome targeted by X000.exe is not observed, as
an

be seen quite easily from the �Observation Never...� line above .

To observe the relaxed out
ome, it happens it su�
es to
hange the stride value to 2:

% ./X000.exe -st 2

Test X000 Allowed

Histogram (3 states)

21 *>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=0;

4996 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

4983 :>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

Ok

...

Condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) is validated

...

Observation X000 Sometimes 21 9979

Time X000 0.00

We easily perform a more
omplete experiment with the stride
hanging from 1 to 8, by running the

run.sh s
ript, whi
h transmits its
ommand line options to all test exe
utables:

% for i in $(seq 1 8)

> do

> sh run.sh -st $i > X.0$i

> done

Run logs are thus saved into �les X.01 to X.08. The following table summarises the results:

98

X.01 X.02 X.03 X.04 X.05 X.06 X.07 X.08

X000 0/10k 21/10k 0/10k 17/10k 0/10k 19/10k 2/10k 40/10k

X001 0/10k 108/10k 0/10k 77/10k 2/10k 29/10k 0/10k 29/10k

X002 0/10k 2/10k 0/10k 6/10k 0/10k 7/10k 0/10k 5/10k

X003 0/10k 4/10k 2/10k 1/10k 0/10k 5/10k 0/10k 11/10k

X004 0/10k 4/10k 0/10k 33/10k 0/10k 10/10k 0/10k 8/10k

X005 0/10k 1/10k 0/10k 0/10k 0/10k 5/10k 0/10k 4/10k

X006 0/10k 8/10k 0/10k 9/10k 0/10k 11/10k 1/10k 12/10k

For every test and stride value
ells show how many times the targeted relaxed out
ome was observed/total

number of out
omes. One sees that even stride value perfom better � noti
eably 2, 6 and 8. Moreover

variation of the stride parameters permits the observation of the relaxed out
omes targeted by all tests.

We
an perform another, similar, experiment
hanging the s (size_of_test) and r (number_of_run)

parameters. Noti
e that the respe
tive default values of s and r are 1000 and 10, as spe
i�ed in the

x86-64.
fg
on�guration �le. We now try the following settings:

% sh run.sh -a 16 -s 10 -r 10000 > Y.01

% sh run.sh -a 16 -s 100 -r 1000 > Y.02

% sh run.sh -a 16 -s 1000 -r 100 > Y.03

% sh run.sh -a 16 -s 10000 -r 10 > Y.04

% sh run.sh -a 16 -s 100000 -r 1 > Y.05

The additional -a 16
ommand line option informs test exe
utable to use 16 logi
al pro
essors, hen
e running
8 instan
es of the �X� tests
on
urrently, as those tests all are two thread tests. This te
hnique of �ooding

the tested ma
hine obviously yields better ressour
e usage and, a

ording to our experien
e, favours out
ome

variability.

The following table summarises the results:

Y.01 Y.02 Y.03 Y.04 Y.05

X000 2.3k/800k 602/800k 465/800k 551/800k 297/800k

X001 2.9k/800k 632/800k 774/800k 667/800k 315/800k

X002 633/800k 55/800k 5/800k 7/800k 0/800k

X003 1.2k/800k 182/800k 152/800k 390/800k 57/800k

X004 2.4k/800k 974/800k 1.5k/800k 2.4k/800k 1.6k/800k

X005 239/800k 21/800k 8/800k 0/800k 1/800k

X006 912/800k 129/800k 102/800k 143/800k 14/800k

Again, we observe all targeted relaxed out
omes. In fa
t, x86 relaxations are relatively easy to observe on

our 16 logi
al
ore ma
hine.
Another test statisti
 of interest is e�
ien
y, that is the number of targeted out
omes observed per

se
ond:

Y.01 Y.02 Y.03 Y.04 Y.05

X000 285 2.2k 6.6k 9.2k 4.2k

X001 366 2.4k 13k 11k 5.2k

X002 78 212 71 140

X003 150 650 2.5k 7.8k 950

X004 288 3.7k 25k 59k 32k

X005 28 72 114 17

X006 118 461 1.7k 2.9k 280

As we
an see, although the setting -s 10 -r 10000 yields the most relaxed out
omes, it may not be

onsidered as the most e�
ient. Moreover, we see that tests X002 and X005 look more
hallenging than

others.

Finally, it may be interesting to
lassify the �X� tests:

99

% m
y
les7 �all |
lassify7 -ar
h X86

R

X003 -> R+po+rfi-po : PodWW Wse Rfi PodRR Fre

X006 -> R : PodWW Wse PodWR Fre

SB

X000 -> SB+rfi-pos : Rfi PodRR Fre Rfi PodRR Fre

X001 -> SB+rfi-po+po : Rfi PodRR Fre PodWR Fre

X002 -> SB+mfen
e+rfi-po : MFen
edWR Fre Rfi PodRR Fre

X004 -> SB : PodWR Fre PodWR Fre

X005 -> SB+mfen
e+po : MFen
edWR Fre PodWR Fre

One sees that two thread non-SC tests for x86 are basi
ally of two kinds.

17 Cross
ompiling, a�nity experiment

In this se
tion we des
ribe how to produ
e the C sour
es of tests on a ma
hine, while running the tests on

another. We also des
ribe a sophisti
ated a�nity experiment.

We assume a dire
tory tst-pp
, that
ontains a series of litmus tests and an index �le �all. Those tests

where produ
ed by the diy
ross7 tool. They illustrate variations of the
lassi
al IRIW test. More spe
i�
ally,

the IRIW variations are produ
ed as follows (see also Se
. 8):

% mkdir tst-pp

% diy
ross7 -name IRIW -o tst-pp
 Rfe PodRR,DpAddrdR,LwSyn
dRR,EieiodRR,Syn
dRR Fre Rfe PodRR,DpAddrdR,LwSyn
dRR,EieiodRR,Syn
dRR Fre

Generator produ
ed 15 tests

We target a Power7 ma
hine des
ribed by the
on�guration �le power7.
fg:

#Ma
hine/OS spe
ifi
ation

os = linux

word = w64

smt = 4

smt_mode = seq

#Test parameters

size_of_test = 1000

number_of_run = 10

avail = 0

memory = dire
t

stride = 1

affinity = in
r0

One may noti
e the SMT (Simultaneaous Multi-Threading) spe
i�
ation: 4-ways SMT (smt=4), logi
al

pro
essors pertaining to the same
ore being numbered in sequen
e (smt_mode = seq) � that is, logi
al

pro
essors from the �rst
ore are 0, 1 ,2 and 3; logi
al pro
essors from the se
ond
ore are 4, 5 ,6 and 7; et
.
The SMT spe
i�
ation is ne
essary to enable
ustom a�nity mode (see Se
. 2.2.4).

One may also noti
e the spe
i�
ation of 0 available logi
al pro
essors (avail=0). As a�nity support is

enabled (affinity=in
r0), test exe
utables will �nd themselves the number of logi
al pro
essors available

on the target ma
hine.

We
ompile tests to C-sour
es pa
ked in ar
hive a.tar and upload the ar
hive to the target power7

ma
hine as follows:

% litmus7 -ma
h power7 -o a.tar tst-pp
/�all

% s
p a.tar power7:

Then, on power7 we unpa
k the ar
hive and produ
e exe
utable tests as follows:

100

power7% tar xmf a.tar

power7% make -j 8

g

 -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -O2 -
 affinity.

g

 -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -O2 -
 outs.

g

 -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -S IRIW+eieios.

...

As a starter, we
an
he
k the e�e
t of available logi
al pro
essor dete
tion and
ustom a�nity
ontrol

(option +
a) by passing the
ommand line option -v to one test exe
utable, for instan
e IRIW.exe:

power7% ./IRIW.exe -v +
a

./IRIW.exe -v +
a

IRIW: n=8, r=10, s=1000, st=1, +
a, p='0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31'

thread allo
ation:

[23,22,3,2℄ {5,5,0,0}

[7,6,15,14℄ {1,1,3,3}

[11,10,5,4℄ {2,2,1,1}

[21,20,27,26℄ {5,5,6,6}

[9,8,25,24℄ {2,2,6,6}

[31,30,13,12℄ {7,7,3,3}

[19,18,29,28℄ {4,4,7,7}

[1,0,17,16℄ {0,0,4,4}

...

We see that our ma
hine power7 features 32 logi
al pro
essors numbered from 0 to 31 (
f p=... above)

and will thus run n=8
on
urrent instan
es of the 4 thread IRIW test. Additionally allo
ation of threads

to logi
al pro
essors is shown: here, the four threads of the test are partitioned into two groups, whi
h are

s
heduled to run on di�erent
ores. For example, threads 0 and 1 of the �rst instan
e of the test will run on

logi
al pro
essors 23 and 22 (
ore 5); while threads 2 and 3 will run on logi
al pro
essors 3 and 2 (
ore 0).
Our experiment
onsists in running all tests with a�nity in
rement (see Se
. 2.2.1) being from 0 and

then 1 to 8 (option -i i), as well as in random and
ustom a�nity mode (options +ra and +
a):

power7% for i in $(seq 0 8)

> do

> sh run.sh -i $i > Z.0$i

> done

power7% sh run.sh +ra > Z.0R

power7% sh run.sh +
a > Z.0C

The following table summarises the results, with X meaning that the targeted relaxed out
ome is observed:

101

Z.00 Z.01 Z.02 Z.03 Z.04 Z.05 Z.06 Z.07 Z.08 Z.0C Z.0R

IRIW X X X X X X X X X

IRIW+addr+po X X X X X

IRIW+addrs X X X

IRIW+eieio+addr X X X

IRIW+eieio+po X X X

IRIW+eieios X X X X

IRIW+lwsyn
+addr X X X

IRIW+lwsyn
+eieio X X X

IRIW+lwsyn
+po X X X X X

IRIW+lwsyn
s X X

IRIW+syn
+addr X X

IRIW+syn
+eieio X X

IRIW+syn
+lwsyn
 X X

IRIW+syn
+po X X X X X X

IRIW+syn
s

On sees that all possible relaxed out
omes shows up with proper a�nity
ontrol. More pre
isely, setting the

a�nity in
rement to 2 or resorting to
ustom a�nity result in the same e�e
t: the �rst two threads of the

test run on one
ore, while the last two threads of the test run on a di�erent
ore. As demonstrated by the

experiment, this allo
ation of test threads to
ores su�
es to favour relaxed out
omes for all tests ex
ept for

IRIW+syn
s, where the syn
 fen
es forbid them.

18 Cross running, testing low-end devi
es

Together litmus7 options -g

 and -linkopt permit using a C
ross
ompiler. For instan
e, assume that

litmus7 runs on ma
hine A and that
rossg

, a
ross
ompiler for ma
hine C, is available on ma
hine B.
Then, the following sequen
e of
ommands
an be used to test ma
hine C:

A% litmus7 -g

rossg

 -linkopt -stati
 -o C-files.tar ...

A% s
p C-files.tar B:

B% tar xf C-files.tar

B% make

B% tar
f /tmp/C-
ompiled.tar .

B% s
p /tmp/C-
ompiled.tar C:

C% tar xf C-
ompiled.tar

C% sh run.sh

Alternatively, using option -
rossrun C, one
an avoid
opying the ar
hive C-
ompiled.tar to ma
hine C:

A% litmus7 -
rossrun C -g

rossg

 -linkopt -stati
 -o C-files.tar ...

A% s
p C-files.tar B:

B% tar xf C-files.tar

B% make

B% sh run.sh

More spe
i�
ally, option -
rossrun C instru
ts the run.sh s
ript to upload exe
utables individually to

ma
hine C, just before running them. Noti
e that exe
utables are removed from C on
e run.

We illustrate the
rossrun feature by testing LB variations on an ARM-based Tegra3 (4
ores) tablet.

Test LB (load-bu�ering) exer
ises the following �
ausality� loop:

102

a: Rx=1

b: Wy=1

: Ry=1

d: Wx=1

po

rf

po

rf

That is, thread 0 reads the values stored to lo
ation x by thread 1, thread 1 reads the values stored to

lo
ation y by thread 0, and both threads read �before� they write.

We shall
onsider tests with varying interpretations of �before�: the write may simply follow the read in

program order (po in test names), may depend on the read (data and addr), or they may be some fen
e

in-betweeen (isb and dmb). We �rst generate tests tst-armwith diy
ross7:

% mkdir tst-arm

% diy
ross7 -ar
h ARM -name LB -o tst-arm PodRW,DpDatadW,DpCtrldW,ISBdRW,DMBdRW Rfe PodRW,DpDatadW,DpCtrldW,ISBdRW,DMBdRW Rfe

Generator produ
ed 15 tests

We use the following, tegra3.
fg,
on�guration �le:

#Tegra 3

size_of_test = 5k

number_of_run = 200

avail = 4

memory = dire
t

#Cross
ompilation

g

 = arm-linux-gnueabi-g

opts = -mar
h=armv7-a -O2

linkopt = -stati

Noti
e the �
ross-
ompilation� se
tion: the name of the g

ross-
ompiler is arm-linux-gnueabi-g

, while

the adequate version of the target ARM variant and stati
 linking are spe
i�ed.

We
ompile the tests from litmus sour
e �les to C sour
e �les in dire
tory TST as follows:

% mkdir TST

% litmus7 -ma
h tegra3 -
rossrun app_81�wifi-auth-188153:2222 tst-arm/�all -o TST

The extra option -
rossrun app_81�wifi-auth-188153:2222 spe
i�es the address to log onto the tablet

by ssh, whi
h is
onne
ted on a lo
al WiFi network and runs a ssh daemon that listens on port 2222.
We
ompile to exe
utables and run them as as follows:

%
d TST

% make

arm-linux-gnueabi-g

 -Wall -std=gnu99 -mar
h=armv7-a -O2 -pthread -O2 -
 outs.

arm-linux-gnueabi-g

 -Wall -std=gnu99 -mar
h=armv7-a -O2 -pthread -O2 -
 utils.

arm-linux-gnueabi-g

 -Wall -std=gnu99 -mar
h=armv7-a -O2 -pthread -S LB.

...

% sh run.sh > ARM-LB.log

It is important to noti
e that the shell s
ript run.sh runs on the lo
al ma
hine, not on the remote tablet.

Ea
h test exe
utable is
opied (by using s
p) to the tablet, runs there and is deleted (by using ssh), as
an

be seen with sh �-x� option:

% sh -x run.sh 2>&1 >ARM-LB.log | grep -e s
p -e ssh

+ s
p -P 2222 -q ./LB.exe app_81�wifi-auth-188153:

+ ssh -p 2222 -q -n app_81�wifi-auth-188153 ./LB.exe -q && rm ./LB.exe

103

+ s
p -P 2222 -q ./LB+data+po.exe app_81�wifi-auth-188153:

+ ssh -p 2222 -q -n app_81�wifi-auth-188153 ./LB+data+po.exe -q && rm ./LB+data+po.exe

...

Experiment results
an be extra
ted from the log �le quite easily, by reading the �Observation� information

from test output:

% grep Observation ARM-LB.log

Observation LB Sometimes 1395 1998605

Observation LB+data+po Sometimes 360 1999640

Observation LB+
trl+po Sometimes 645 1999355

Observation LB+isb+po Sometimes 1676 1998324

Observation LB+dmb+po Sometimes 18 1999982

Observation LB+datas Never 0 2000000

Observation LB+
trl+data Never 0 2000000

Observation LB+isb+data Sometimes 654 1999346

Observation LB+dmb+data Never 0 2000000

Observation LB+
trls Never 0 2000000

Observation LB+isb+
trl Sometimes 1143 1998857

Observation LB+dmb+
trl Never 0 2000000

Observation LB+isbs Sometimes 2169 1997831

Observation LB+dmb+isb Sometimes 178 1999822

Observation LB+dmbs Never 0 2000000

What is observed (Sometimes) or not (Never) is the o

uren
e of the non-SC behaviour of tests. All tests

have the same stru
ture and the observation of the non-SC behaviour
an be interpreted as some read not

being �before� the write by the same thread. This situation o

urs for plain program order (plain test LB

and po variations) and for the isb fen
e.

Referen
es

[1℄ J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fen
es in Weak Memory Models. In CAV, 2010.

[2℄ Intel 64 Ar
hite
ture Memory Ordering White Paper, August 2007.

[3℄ L. Lamport. How to make a
orre
t multipro
ess program exe
ute
orre
tly on a multipro
essor. IEEE

Trans. Comput., 46(7):779�782, 1979.

[4℄ Sela Mador-Haim, Lu
 Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, S
ott Owens, Ra-

jeev Alur, Milo Martin, Peter Sewell, and Derek Williams. An axiomati
 memory model for Power

multipro
essors. In CAV, 2012.

[5℄ Dennis Shasha and Mar
 Snir. E�
ient and
orre
t exe
ution of parallel programs that share memory.

ACM Trans. Program. Lang. Syst., 10(2):282�312, 1988.

104

