
Stability in Weak Memory Models

Jade Alglave1,2 and Luc Maranget2

1 Oxford University2 INRIA

Abstract. Concurrent programs running on weak memory models exhibit re-
laxed behaviours, making them hard to understand and to debug. To use stan-
dard verification techniques on such programs, we can force them to behave as
if running on a Sequentially Consistent (SC) model. Thus, weexamine how to
constrain the behaviour of such programs via synchronisation to ensure what we
call their stability, i.e. that they behave as if they were running on a stronger
model than the actual one, e.g. SC. First, we define sufficientconditions ensur-
ing stability to a program, and show that Power’s locks and read-modify-write
primitives meet them. Second, we minimise the amount of required synchronisa-
tion by characterising which parts of a given execution should be synchronised.
Third, we characterise the programs stable from a weak architecture to SC. Fi-
nally, we present ouroffence tool which places either lock-based or lock-free
synchronisation in a x86 or Power program to ensure its stability.

Concurrent programs running on modern multiprocessors exhibit subtle behaviours,
making them hard to understand and to debug: modern architectures (e.g. x86 or Power)
provideweak memory models, allowing optimisations such asinstruction reordering,
store bufferingor write atomicity relaxation[2]. Thus an execution of a program may
not be an interleaving of its instructions, as it would be on aSequentially Consistent
(SC) architecture [18]. Hence standard analyses for concurrent programs might be un-
sound, as noted by M. Rinard in [25]. Memory model aware verification tools exist,
e.g. [24, 11, 15, 30], but they often focus on one model at a time, orcannot handle the
write atomicity relaxation exhibitede.g. by Power: generality remains a challenge.

Fortunately, we can force a program running on a weak architecture to behave as if
it were running on a stronger one (e.g. SC) by usingsynchronisation primitives; this
underlies thedata race free guarantee(DRF guarantee) of S. Adve and M. Hill [3].

Hence, as observede.g. by S. Burckhart and M. Musuvathi in [12],“we can sensi-
bly verify the relaxed executions [. . . ] by solving the following two verification problems
separately: 1. Use standard verification methodology for concurrent programs to show
that the [SC] executions [. . . ] are correct. 2. Use specialized methodology formemory
model safetyverification”. Here,memory model safetymeans checking that the execu-
tions of a program, although running on a weak architecture,are actually SC. To apply
standard verification techniques to concurrent programs running on weak memory mod-
els, we thus first need to ensure that our programs have a SC behaviour. S. Burckhart and
M. Musuvathi focus in [12] on theTotal Store Order(TSO) [28] memory model. We
generalise their idea to a wider class of models (defined in [5], and recalled in Sec. 1):
we examine how to force a program running on a weak architectureA1 to behave as if
running on a stronger oneA2, a property that we callstability fromA1 to A2.

To ensure stability to a program, we examine the problem of placinglock-basedor
lock-freesynchronisation primitives in a program. We callsynchronisation mappingan



insertion of synchronisation primitives (eitherbarriers (or fences), read-modify-writes,
or locks) in a program. We study whether a given synchronisation mapping ensures
stability to a program running on a weak memory model,e.g. that we placed enough
primitives in the code to ensure that it only has SC executions. D. Shasha and M. Snir
proposed in [27] thedelay set analysisto insert barriers in a program, but their work
does not provide any semantics for weak memory models. Hencequestions remain
w .r .t . the adequacy of their method in the context of such models.

On the contrary, locks allow the programmer to ignore the details of the memory
model, but are costly from a compilation point of view. As noted by S. Adve and H.-J.
Boehm in [4],“on hardware that relaxes write atomicity [e.g. Power], it is often un-
clear that more efficient mappings (than the use of locks) arepossible; even the fully
fenced implementation may not be sequentially consistent.” Hence not only do we need
to examine thesoundnessof our synchronisation mappings (i .e. that they ensure sta-
bility to a program), but also their cost. Thus, we present several new contributions:

1. We define in Sec. 2 sufficient conditions on synchronisation to ensure stability to a
program. As an illustration, we provide in Sec. 3 semantics to the locks and read-
modify-writes (rmw) of the Power architecture [1] (i .e. to thelwarx andstwcx.
instructions) and show in Coq that they meet these conditions.

2. We propose along the way several synchronisation mappings, which we prove in
Coq to enforce a SC behaviour to an x86 or Power program.

3. We optimise these mappings by generalising in Sec. 4 the approach of [27] to weak
memory models and both lock-based and lock-free synchronisation, and charac-
terise in Coq the executions stable from a weak architectureto SC.

4. We describe in Sec. 5 our newoffence tool, which places either lock-based or lock-
free synchronisation in a x86 or Power assembly program to ensure its stability,
following the aforementioned characterisation. We detailhow we usedoffence to
test and measure the cost of our synchronisation mappings.

We formalised our results in Coq; we omit the proofs for brevity. A long version with
proofs, the Coq development, the documentation and sourcesof offence and the exper-
imental details can be found athttp://offence.inria.fr.

1 Context
We give here the background on which we build our results. This section summarises
our previous generic model [5], which embraces SC [18], Sun TSO, PSO and RMO [28],
Alpha [7] and a fragment of Power [1]. Fig. 1 shows a table of our relations. Theiriw
test [10] (independent reads of independent writes), in Fig. 2, is our running example.

Executions An evente is a read or a write, composed of a direction R (read) or
W (write), a locationloc(e), the instruction from which it comesins(e), a valueval(e),
a processorproc(e), and a unique identifier. We represent each instruction by the events
it issues. In Fig. 2, we associate the store(e) x← 1 onP2 with the event(e)Wx1. We
write E for the set of events, andW (resp.R) for the subset of write (resp. read) events.
We writew (resp.r) for a write (resp. read), andm or e when the direction is irrelevant.

We associate a program with anevent structureE , (E,
po
→), composed of its

eventsE and theprogram order
po
→, a per-processor total order overE. In Fig. 2, the

read(a) from x onP0 is in program order with the read(b) from y onP0, i .e. (a)Rx1

2



Name Notation Comment

program order m1

po
→ m2 per-processor total order

preserved program orderm1

ppo
→ m2 pairs maintained in program order;

ppo
→ ⊆

po
→

read-from map w
rf
→ r links a write to a read reading its value

write serialisation w1

ws
→ w2 total order on writes to the same location

from-read map r
fr
→ w r reads from a write precedingw in

ws
→

barriers m1

ab
→ m2 ordering induced by barriers

Fig. 1. Table of relations

iriw
P0 P1 P2 P3

(a)r1← x (c)r3← y (e)x← 1 (f)y← 2
(b)r2← y (d)r4← x

Observed?r1=1; r2=0; r3=2; r4=0;

(a) Rx1(b) Ry0

(f) Wy2

(c) Ry2 (d) Rx0

(e) Wx1

po:0

fr

po:1

fr

rf

rf

Fig. 2. The iriw test and a non-SC execution

po
→ (b)Ry0. The

dp
→ relation (included in

po
→, the source being a read) models the depen-

dencies between instructions,e.g. when we compute the address of a load or store from
the value of a preceding load.

Given an event structureE, we represent an executionX , (
ws
→,

rf
→) of the corre-

sponding program by two relations overE. Thewrite serialisation
ws
→ is a per-location

total order on writes modeling thememory coherenceassumed by modern architectures
[13], linking a write w to any writew′ to the same location hitting the memory af-

ter w. The read-from map
rf
→ links a writew to a readr from the same location that

reads fromw. We derive thefrom-read map
fr
→ from

ws
→ and

rf
→. A readr is in

fr
→

with a write w when the writew′ from which r reads hit the memory beforew did:

r
fr
→ w , ∃w′, w′

rf
→ r ∧ w′

ws
→ w.

In Fig. 2, the specified outcome corresponds to the executionon the right, if each
location and register initially holds0. If r1=1 in the end, the read(a) read its value

from the write(e) on P2, hence(e)
rf
→ (a). If r2=0, the read(b) read its value from

the initial state, thus before the write(f) on P3, hence(b)
fr
→ (f). Similarly, we have

(f)
rf
→ (c) fromr3=2, and(d)

fr
→ (e) fromr4=0.

ArchitecturesIn a shared-memory multiprocessor, a write may be committedfirst into
a store buffer, then into a cache, and finally into memory. Hence, while a write transits
in store buffers and caches, a processor may read a past value.

We model this by some subrelation of
rf
→ beingnon-global: they can be ignored by

some processors. We write
rfi
→ (resp.

rfe
→) for theinternal(resp.external) read-from map,

i .e. a read-from map between two events from the same (resp. distinct) processor(s).
Hence we model a readr by a processorP0 reading from a writew in P0’s store buffer

by w
rfi
→ r being non-global. Whenr reads from a writew by a distinct processorP1

3



Code Comment Doc
mfence WR non-cumulative barrier [16, p. 291]

cmp;bne;isync this sequence forms aRW, RR non-cumulative barrier [1, p. 661]
lwsync RW, RR, WW non-, A- and B-cumulative barrier [1, p. 700]
sync RW, RR, WW, WR non-, A- and B-cumulative barrier [1, p. 700]

Fig. 3.Table of x86 and Power barriers

into a cache shared byP0 andP1 only (a case ofwrite atomicityrelaxation [2]),w
rfe
→ r

is non-global, andw is said to benon-atomic. TSO authorisese.g. store buffering (i .e.
rfi
→ is non-global) but considers stores to be atomic (i .e.

rfe
→ is global). We write

grf
→ for

the global subrelation of
rf
→. We consider

ws
→ and

fr
→ global, since

ws
→ is the order in

which the writes to a certain location hit the memory.
Moreover, some pairs of events in the program order may be reordered. Thus only

a subset of the pairs of events in
po
→, gathered in a subrelation

ppo
→ (preserved program

order), is guaranteed to occur in this order. TSO for example authorises write-read pairs
to be reordered, but nothing else:

ppo
→ =

po
→\ (W× R).

Finally, architectures provide barrier instructions to order certain pairs of events;
Fig. 3 gives the x86 and Power ones that we use. We gather the orderings induced by

barriers in the global relation
ab
→. Following [5], the relation

fence
→ ⊆

po
→ induced by a

barrierfence is non-cumulativewhen it orders certain pairs of events surrounding the

barrier:NC(
fence
→ ) , (

fence
→ ⊆

ab
→). For example, the x86mfence barrier is a non-

cumulative barrier ordering write-read pairs only:(w
mfence
→ r)⇒ (w

ab
→ r). If there is a

dataflow dependency, e.g. via a comparisoncmp, from a read to a conditional branch
(e.g. bne), Powerisync forms a non-cumulative barrier when placed in

po
→ after the

cmp;bne sequence, for read-read and read-write pairs :(r
cmp;bne;isync
→ m)⇒ (r

ab
→ m).

The relation
fence
→ is cumulativew .r .t . another relation

s
→ ⊆

rf
→ when it makes the

writes of
s
→ atomic (e.g. by flushing the store buffers and caches). Formally, we define

an A-cumulative (resp. B-cumulative) barrier asAC(
fence
→ ,

s
→) , (

s
→;

fence
→ ) ⊆

ab
→ (resp.

BC(
fence
→ ,

s
→) , (

fence
→ ;

s
→) ⊆

ab
→). For example, Powersync barrier is non- (resp. A-

and B-) cumulative for all pairs: we have(m1
sync
→ m2) (resp.(m1

rf
→ w

sync
→ m2) and

(m1
sync
→ w

rf
→ m2)) implies (m1

ab
→ m2). Powerlwsync is non- (resp. A- and B-)

cumulative for all pairs except write-read ones; we have(m1
lwsync
→ m2) (resp.(m1

rf
→

r
lwsync
→ m2) and(m1

lwsync
→ w

rf
→ m2)) implies(m1

ab
→ m2) if (m1, m2) 6∈ (W× R).

An architectureA , (ppo, grf, ab) specifies the functionppo (resp.grf, ab)

returning the relation
ppo
→ (resp.

grf
→,

ab
→) when given an execution.

Validity Theuniproc(E, X) , acyclic(
ws
→ ∪

fr
→ ∪

rf
→ ∪

po-loc
→ ) condition (where

po-loc
→

is the program order restricted to events with the same location) forces a processor in
a multiprocessor context to respect the memorycoherence[13]. The thin(E, X) ,

acyclic(
rf
→ ∪

dp
→) condition prevents executions where values seem to comeout of thin

air [21]. We define theglobal happens-beforerelationA.ghb(E, X) of an execution
(E, X) on an architectureA as the union of the relations global onA:

A.ghb(E, X) ,
ws
→ ∪

fr
→ ∪

ppo
→ ∪

grf
→ ∪

ab
→

4



An execution(E, X) is valid on an architectureA, written A.valid(E, X), when
the relationA.ghb(E, X) is acyclic (together with the two checks above):

A.valid(E, X) , uniproc(E, X) ∧ thin(E, X) ∧ acyclic(A.ghb(E, X))

Finally, we consider an architectureA1 to beweakerthan an architectureA2, written
A1 ≤ A2, whenA1 authorises at least all the executions valid onA2. TSO is weaker
than SC, hence all the SC executions of a program are valid on TSO. In the following,
we considerA2 to be without barriers,i .e.

ab2→= ∅.

2 Covering relations
We examine now how to force the executions of a program running on a weak architec-
tureA1 to be valid on a stronger oneA2, which we callstability fromA1 to A2, i .e. we
examine when the following property holds for all(E, X):

stableA1,A2
(E, X) , A1.valid(E, X)⇒ A2.valid(E, X)

The execution ofiriw in Fig. 2 is not stable from Power to SC, for it is valid on
Power yet not on SC. We can stabilise it usingsynchronisation idioms, e.g. barriers
or locks. Synchronisation idiomsarbitrate conflictsbetween accesses,i .e. ensure that
one out of two conflicting accesses occurs before the other. We formalise this with an
irreflexiveconflict relation

c
→ overE, such that∀xy, x

c
→ y ⇒ ¬(y

po
→ x) and asyn-

chronisationrelation
s
→ overE. An execution(E, X) is coveredwhen

s
→ arbitrates

c
→:

coveredc,s(E, X) , ∀xy, x
c
→ y ⇒ x

s
→ y ∨ y

s
→ x

We consider a relation
s
→ to becoveringwhen ordering by

s
→ the conflicting ac-

cesses of an execution(E, X) valid onA1 guarantees its validity onA2, i .e. the syn-
chronisation

s
→ arbitrates enough conflicts to enforce a strong behaviour:

covering(
c
→,

s
→) , ∀EX, (A1.valid(E, X) ∧ coveredc,s(E, X))⇒ A2.valid(E, X)

Lock-based synchronisationFor example, theDRF guarantee [3] ensures that if the
competing accesses(defined below) of an execution are ordered by locks, then this
execution is SC,i .e. locks are coveringw .r .t . the competing accesses. Two events are
competingif they are from distinct processors, to the same location, and at least one of
them is a write (e.g. in Fig. 2, the read(a) from x onP0 and the write(e) to x onP2):

m1
cmp
↔ m2 , proc(m1) 6= proc(m2) ∧ loc(m1) = loc(m2) ∧ (m1 ∈W ∨m2 ∈W)

We describe the ordering induced by locks by a relation
lock
→ (instantiated in Sec. 3.1)

overE, such thatacyclic(
lock
→ ∪

ws
→ ∪

fr
→ ∪

rf
→), corresponding in Fig. 2 to placing locks

to a variableℓ1 on the accesses(a), (d) and(e) relative tox, and locks to a different
variableℓ2 on the accesses(b), (c) and (f) relative toy. Thus we have a cycle in
lock
→ ∪

po
→: (a)

po
→ (b)

lock
→ (f)

lock
→ (c)

po
→ (d)

lock
→ (e)

lock
→ (a). If

lock
→ ∪

po
→ is acyclic, then

the execution of Fig. 2 is forbidden. Formally, we have:

Lem. 1. acyclic(
lock
→ ∪

po
→)⇒ covering(

cmp
↔ , (

lock
→ ∪

po
→)

+

)

This lemma leads to a mapping which we call L (for locks), which simply places
a lock by the same lock variable on each side of a given conflictedge. By Lem. 1, it
ensures stability to a program for any pair(A1, A2).

5



Arch. Fragile pair Barriers (mapping F)

Power r
po
→ r r

sync
→ r (need A-cumulativity)

r
po
→ w r

lwsync
→ w (A-cumulativity OK)

w
po
→ w w

lwsync
→ w (no need for A-cumulativity)

w
po
→ r w

sync
→ r (need for write-read non-cumulativity)

x86 w
po
→ r w

mfence
→ r (need for write-read non-cumulativity)

Fig. 4. Mapping F: barriers

Lock-free synchronisationWe give here an example of a covering lock-free synchroni-
sation relation. A program can distinguish between two architecturesA1 ≤ A2 for one
of two reasons. First, if the program involves a pair(x, y) maintained in program order

on A2 (i .e. x
ppo2→ y) but not onA1 (i .e. ¬(x

ppo1→ y)). In Fig. 2, we have(a)
po
→ (b).

Hence on a strong architectureA2 such as SC where
ppo2→=

po
→, we have(a)

ppo2→ (b). On
a weak architectureA1 such as Power, where the read-read pairs in program order are
not maintained, we have¬((a)

ppo1→ (b)).
Second, if the program reads from a write atomic onA2 but not onA1. In Fig. 2, we

have(e)
rfe
→ (a). On a strong architectureA2 such as SC where the writes are atomic,

i .e.
grf
→=

rf
→, we have(e)

grf
→ (a). On a weak architectureA1 such as Power, which

relaxes write atomicity, we have¬((e)
grf
→ (a)). We call such readsfragile readsand

define them as (
r2\1→ ,

r2→ \
r1→ being the set difference):

fragile(r) , ∃w, w
grf2\1→ r

We consider such differences between architectures as conflicts, and formalise this
notion as follows. We consider that two events form afragile pair (written

frag
→) if they

are maintained in the program order onA2, and either they are not maintained in the
program order onA1, or the first event is a fragile read:

m1
frag
→ m2 , m1

ppo2→ m2 ∧
(

¬(m1
ppo1→ m2) ∨ fragile(m1)

)

An execution is covered if the relation
ab1→ arbitrates the fragile pairs. In Fig. 2, this

corresponds to placing a barrier between(c) and(d) onP1, i .e. (c)
ab1→ (d), and another

barrier between(a) and(b) onP0, i .e. (a)
ab1→ (b). Hence we have a cycle in

ab1→ ∪
rf
→:

(d)
rfe
→ (a)

ab1→ (b)
rfe
→ (c)

ab1→ (d). If
ab1→ is A-cumulativew .r .t .

grf2\1→ , we create a cycle
in

ghb1→ , which forbids the execution:(d)
ghb1→ (b)

ghb1→ (d). Formally, we have:

Lem. 2. AC(
ab1→,

grf2\1→ )⇒ covering(
frag
→,

ab1→)

This lemma leads to a mapping which we call F (for fences), given in Fig. 4. This
mapping places a barrier between each fragile pair of a program. Following Lem. 2, it
enforces stability to a program for any pair(A1, A2). Recall that we give the semantics
of the barriers that we use in the mapping F in Sec. 1,§ Architectures, on p.4 and Fig. 3.

In x86, stores are atomic, and only the write-read pairs in program order are not
preserved,i .e. the fragile pairs are the pairsw

po
→ r. We do not need cumulativity in

x86,i .e. we only need a non-cumulative write-read barrier:w
mfence
→ r.

In Power, no pair is preserved in program order except the read-read and read-write
pairs with a dependency between the accesses [5]. But since stores are not atomic, even

6



Name Code Comment Doc [1]

load reserve lwarx r1,0,r2 loads from the address inr2 intor1 and reserves the address inr2 p. 718

store conditionalstwcx. r1,0,r2 checks if the address inr2 is reserved; if so, stores fromr1 into
this address and writes1 into registercr; if not, writes0 into cr

p. 721

branch not equal bne L checks if registercr holds0, if not branches toL p. 63

compare cmpw r4, r6 compares values inr4 andr6 p. 102

Fig. 5. Table of Power assembly instructions, excluding barriers

the dependent read-read and read-write pairs are fragile. For a read-read pairr1

po
→ r2,

sincer1 can read from a non-atomic writew, we need a cumulative barrier betweenr1

andr2. Butlwsync does not order write to read chains,i .e. lwsync betweenr1 and
r2 will not orderw andr2. Therefore we need async: r1

sync
→ r2. For a read-write pair

r
po
→ w, we need a cumulative barrier as well, butlwsync is sufficient here, for it will

order the write from whichr may read, andw. In the write-write and write-read cases,
there is no need for cumulativity. In the write-write case, alwsync is enough, for it
orders write-write pairs; but in the write-read case, we need async.

The mapping F agrees with D. Lea’s JSR-133 Cookbook for Compiler Writers [19]
for write-write and write-read pairs. Our mapping is much more conservative than D.
Lea’s for read-read and read-write pairs: it is unclear whether D. Lea’s mapping (meant
to implement Java’s volatiles) intends to restore SC like ours, or rather a weaker memory
model. The mapping F on write-write and write-read pairs corresponds to the optimised
version of P. McKenney and R. Silvera’s Example Power Implementation for C/C++
Memory Model [22] for ”Store Seq Cst”. Their ”Load Seq Cst” isimplemented by
sync;ld;cmp;bc; isync. The use ofsync before a load access corresponds to
our mapping on read-read and read-write pairs. The sequencecmp;bc;isync after
the same load access ensures that the Load Seq Cst has, in addition to an SC semantics,
a load acquiresemantics.

3 Synchronisation idioms
To illustrate Sec. 2, we now study the semantics of Power’s locks andrmw [1]. As noted
by S. Adve and H.-J. Boehm in [4]“on hardware that relaxes write atomicity [such
as Power] even the fully fenced implementation may not be sequentially consistent.”
Thus it is unclear whether the synchronisation primitives provided by the architecture
actually restore SC: it could perfectly be the architect’s intent (e.g. lwsync is not
strong enough to restore SC, but is faster thansync, as we show in Sec. 5), or a bug in
the implementation [5]. Hence we need to define the semanticsof the synchronisation
primitives given in the documentation, and study whether they allow us to restore SC,
i .e. that we can use them to build covering relations, as defined inSec. 2.

We first defineatomic pairs, which are the stepping stone to build locks, studied in
Sec. 3.1 andrmw, studied in Sec. 3.2. We show how to use these primitives to build
covering relations. Second, because cumulativity might betoo costly in practice, or its
implementation challenging, we propose in Sec. 3.2 two lock-free mappings restoring
a strong architecture from Power without using cumulativity, as an alternative to the
mapping F (see Sec. 2) which uses cumulativity.

Atomicity Fig. 6(a) gives a generic Powerrmw (see Fig. 5 for the instructions we use).
Thelwarx (a1) loads from its source address in registerr5 andreservesit. Any subse-
quent store to the reserved address from another processor and any subsequentlwarx

7



Initially r3 = ℓ, r4 = 0 andr5 = 1

loop:
(a1) lwarx r1,0,r5

[...]
(a2) stwcx. r2,0,r5
(b) bne loop

loop:
(a1) lwarx r6,0,r3
(b) cmpw r4,r6
(c) bne loop

(a2) stwcx. r5,0,r3
(d) bne loop
(e) isync

[...]

[...]
(f) lwsync
(g) stw r4,0,r3

(a) rmw (b) Lock (c) Unlock

Fig. 6.Read-modify-write, lock and unlock in Power

from the same processor invalidates the reservation. Thestwcx. (a2) checks if the
reservation is valid; if so, it issuccessful: it stores into the reserved address and the
code exits the loop. Otherwise,stwcx. does not store and the code loops. Thus these
instructions ensureatomicity to the code they surround (if this code does not contain
any lwarx nor stwcx.), as no other processor can write to the reserved location be-
tween thelwarx and the successfulstwcx..

We distinguish the reads and writes issued by such instructions from the plain ones:
we writeR

∗ (resp.W∗) for the subset ofR (resp.W) issued by alwarx (resp. a success-
ful stwcx.), and define two eventsr andw to form an atomic pairw .r .t . a locationℓ

if (a) w was issued by a successfulstwcx. to ℓ, (b) r was issued by the lastlwarx

from ℓ before (in
po
→) thestwcx. that issuedw, and(c) no other processor wrote toℓ

betweenr andw:
atom(r, w, ℓ) , r ∈ R

∗ ∧ w ∈W
∗ ∧ loc(r) = loc(w) = ℓ ∧ (a)

r = maxpo
→

({m | m ∈ (R∗ ∪W
∗) ∧m

po
→ w}) ∧ (b)

¬(∃w′ ∈W, proc(w′) 6= proc(r) ∧ loc(w′) = ℓ ∧ r
fr
→ w′

ws
→ w) (c)

3.1 Locks
Atomic pairs are usede.g. in lock andunlockprimitives [1, App. B]. The idiomatic
Power lock (resp. unlock) is shown in Fig. 6(b) (resp. Fig. 6(c)).

Critical sectionsA lock reads the lock variableℓ to see if it is free; an unlock writes to
ℓ to free it. The instructions between a lock and an unlock formacritical section. Thus,
a critical section consists of a lockLock(ℓ, r) and an unlockUnlock(ℓ, r, w) (we define
these two predicates in the next paragraph) with the same variableℓ, and the events in
po
→ between the lock’s read and the unlock’s write:

cs(E , ℓ, r, w) , Lock(ℓ, r) ∧ E = {e | r
po
→ e

po
→ w} ∧Unlock(ℓ, r, w)

We write loc(cs) for the location of a critical sectioncs. Two critical sectionscs1
andcs2 with the same locationℓ areserialisedif cs2 reads fromcs1, as in Fig. 7: on
the left iscs1, composed of a lockLock1(ℓ), an eventm1 and an unlockUnlock1(ℓ),
which writes intoℓ via the write(g). The second critical sectioncs2 is on the right: the
read(a1) of its lock Lock2(ℓ) reads from(g). Thus,cs1 andcs2 are serialised ifcs2
Lock’s read (writtenR(cs2)) reads fromcs1 Unlock’s write (writtenW(cs1)):

cs1
cssℓ→ cs2 , loc(cs1) = loc(cs2) = ℓ ∧W(cs1)

rf
→ R(cs2)

8



ghb1

ghb1

ghb1

po:0 po:1

po:1

po:1

rf

Unlock2(l)(g) Wl0

Unlock1(l)

Lock1(l) Lock2(l)

(a1) R*l0

(a2) W*l1m1

m2

Fig. 7. Opening lock and unlock

Given a locationℓ, two eventsm1 andm2 are in
lockℓ→ if they are in two serialised

critical sections (as in Fig. 7), orm1 is in
lockℓ→ with an event itself in

lockℓ→ with m2

(m ∈ cs ensuresm is betweencs import and export barriers in
po
→):

m1
lockℓ→ m2 , (∃cs1

cssℓ→ cs2, m1 ∈ cs1 ∧m2 ∈ cs2) ∨ (∃m, m1
lockℓ→ m

lockℓ→ m2)

Finally, two eventsm1 andm2 are in
lock
→ if there existsℓ such thatm1

lockℓ→ m2.

Lock and unlockIn the Power lock of Fig. 6(b), the lines(a1) to (a2) form an atomic
pair, as in Fig. 6(a); this sequence loops until it acquires the lock. Here, acquiring the
lock means that thelwarx read the lock variableℓ, and thatℓ was later written to by a
successfulstwcx.. Thus, the readr of thelwarx takes a lockℓ if it forms an atomic
pair with the writew from the successfulstwcx.:

taken(ℓ, r) , ∃w, atom(r, w, ℓ)

The acquisition is followed by a sequencebne;isync (lines(d) and(e)), forming
animport barrier [1, p. 721]. An import barrier prevents any event to float above a read
issued by alwarx: in Fig. 7, the eventm2 in cs2 is in

ghb1→ with the read(a1) from its
Lock’s lwarx. Hence the readr of a lock’slwarx satisfies theimport predicate when
no accessm afterr can be speculated beforer:

import(r) , ∀rm, (r ∈ R
∗ ∧ r

po
→ m)⇒ (r

ab1→ m)

Fig. 6(c) shows Power’s unlock, starting (line(f)) with anexport barrier[1, p. 722],
here alwsync. The export barrier forces the accesses before the writew of the unlock
to be committed to memory before the next lock primitive takes the lock: in Fig. 7, the
eventm1 in cs1 is in

ghb1→ with the read(a1) of cs2’s Lock. Thus we define an export
barrier as B-cumulative, but onlyw .r .t . reads issued by thelwarx of an atomic pair:

export(w) , ∀rm, (r ∈ R
∗ ∧ (m

po
→ w

rf
→ r))⇒ (m

ab1→ r)

Then a store to the lock variable (line(g)), or more precisely the next write event
to ℓ in program order after a lock acquisition, frees the lock:

free(ℓ, r, w) , w ∈W ∧ loc(w) = ℓ ∧ r
po
→ w ∧ taken(ℓ, r)∧

¬(∃w′ ∈W, loc(w′) = ℓ ∧ r
po
→ w′

po
→ w)

A lock primitive thus consists of ataken operation (see Fig. 6(b), lines(a1) to
(a2)) followed by an import barrier. An unlock consists of an export barrier (line(f))

9



(a) fno[x]=1(b) Ry0

(f) Wy2

(c) fno[y]=2 (d) Rx0

(e) Wx1

po:0

fr

po:1

fr

rf/ws

rf/ws

(a) fno[x]=1

(a1) R*x1

(a2) W*x1

(b) Ry0

(e) Wx1

(f ) Wy2

fr

po:0

rf

ws

fr

Fig. 8. (a) iriw after mapping P 7.(b) Openingfno onP0

followed by a write freeing the lock (line(g)):

Lock(ℓ, r) , taken(ℓ, r) ∧ import(r)

Unlock(ℓ, r, w) , free(ℓ, r, w) ∧ export(w)

We show that this semantics ensures the acyclicity of
lock
→ ∪

po
→, i .e. following

Lem. 1,(
lock
→ ∪

po
→)

+

is covering for the competing accesses. Hence locks on the com-
peting accesses ensures a SC behaviour to Power programs:

Lem. 3. ∀EX, A1.valid(E, X)⇒ acyclic(
lock
→ ∪

po
→)

Our import barrier allows events to be delayed so that they are performed inside
the critical section. Our export barrier allows the events after the unlock to be specu-
lated before the lock is released. Such relaxed semantics already exist for high-level
lock and unlock primitives [8, 26]. In the documentation [1,p. 721], the import barrier
is a sequencebne;isync (i .e. a read-read, read-write non-cumulative barrier) or a
lwsync, i .e. cumulative [1, p.721]. Lem. 3 shows that the first one is enough, for our
import barrier does not need cumulativity. The export barrier is async (i .e. cumulative
for all pairs) or alwsync [1, p. 722]. Lem. 3 shows that we only need a B-cumulative
barrier towards reads issued by alwarx, i .e. async is unnecessarily costly. Moreover,
although alwsync is not B-cumulative towards plain reads, its implementations ap-
pear experimentally to treat the reads issued by thelwarx of an atomic pair specially.
We tested and confirmed this semantics oflwsync with our diy tool [5], by running
our automatically generated tests up to1010 times each (see the logs online).

3.2 Read-modify-write primitives
By Lem. 2, we can restore SC in theiriw test of Fig. 2 using A-cumulative barriers
between the fragile pairs(a) and(b) on P0, and(c) and(d) on P1. Yet, cumulativity
may be challenging to implement or too costly in practice [5]. We propose a mapping of
certain reads tormw (as in Fig. 6(a)), and show that this restores a strong architecture
from a weaker one without using cumulativity.

In Fig. 8(a), we replaced the fragile reads(a) and(c) of iriw by rmw: we say these
fragile reads areprotected(a notion defined below). In the example we usefetch and

10



no-op(fno) primitives [1, p.719] to implement atomic reads. Yet, our results hold for
any kind ofrmw. We show that when the fragile reads are protected, we do not need
cumulative barriers, but just non-cumulative ones. If a read is protected by armw, then
thermw compensates the need for cumulativity by enforcing enough order to the write
from which the protected read reads.

Protecting the fragile readsWe consider that two eventsr andw form armw w .r .t . a
locationℓ if they form an atomic pairw .r .t . ℓ (i .e. the code in Fig. 6(a) does not loop),
or there is a readr′ afterr in the program order forming an atomic pairw .r .t . ℓ with
w, such thatr′ is the last read issued by the loop before thestwcx. succeeds (i .e. the
code in Fig. 6(a) loops). We do not consider the case where theloop never terminates:

rmw(r, w, ℓ) , atom(r, w, ℓ) ∨ (∃r′, r
po
→ r′ ∧ loc(r) = loc(r′) ∧ atom(r′, w, ℓ))

In Fig. 8(b), we open up thefno box protecting the read(a) from x on P0. We
suppose that thefno is immediately successful,i .e. the code in Fig. 6(a) does not loop.
Hence we expand thefno event(a) on P0 to ther∗ (a1) (from thelwarx) in program
order with thew∗ (a2) (from the successfulstwcx.).

We define a read to beprotectedwhen it is issued by thelwarx of a rmw imme-
diately followed in program order by a non-cumulative barrier; an execution(E, X) is
protected when its fragile reads are:

protected(r) , ∃w, rmw(r, w, loc(r)) ∧ (∀m, w
po
→ m⇒ w

ab1→ m)

protected(E, X) , ∀r, fragile(r)⇒ protected(r)

In Fig. 8(b), the write(e) from which (a1) reads hits the memory before(a2),

i .e. (e)
ws
→ (a2). Hence there are two paths from(e) to (b): (e)

rf
→ (a1)

po
→ (b) and

(e)
ws
→ (a2)

po
→ (b). Thus we can trade the fragile pair(a1, b) for (a2, b) and compensate

the lack of write atomicity of(e) (i .e. (e)
rfe
→ (a) not global) with the write serialisation

between(e) and(a2) (thanks to thermw) instead of cumulativity before. Formally, we
prove that a sequencew

grf2\1→ r
ppo2→ m with r protected is globally ordered onA1:

Lem. 4. ∀wrm, (protected(r) ∧w
grf2\1→ r

ppo2→ m)⇒ w
ws
→;

ghb1→ m

Thus, if we protect the fragile reads, the only remaining fragile pairs are the ones in
ppo2\1→ . In Fig. 8(a), we have(e)

ws
→ (a2)

po
→ (b)

fr
→ (f) and(f)

ws
→ (c2)

po
→ (d)

fr
→ (e),

hence a cycle in
ws
→ ∪

fr
→ ∪

po
→. Since

ws
→ and

fr
→ are global, to invalidate this cycle,

we need to order globally (e.g. by a barrier) the accesses(a2) and(b) on P0 and(c2)
and (d) on P1. Indeed, if an execution is protected, non-cumulative barriers placed
between the remaining fragile pairs in

ppo2\1→ ensure stability:

Lem. 5. A1.valid(E, X) ∧ protected(E, X) ∧ (
ppo2\1→ ⊆

ab1→)⇒ A2.valid(E, X)

This lemma leads to a mapping which we call P (for protected reads), given in Fig. 9.
This mapping places afno on the first read of the fragile pairs, and a barrier between
this fno and the second access of the fragile pairs. If the first accessof the fragile pair is
a write, it remains unchanged and we only place a barrier between the two accesses, fol-
lowing the mapping F. For the read-read (resp. read-write) case, since replacing a read
by a fno amounts to replacing the read by a sequence of events ending with a write, we

11



Arch. Fragile pair rmw (mapping A)rmw (mapping P)

Power r
po
→ r fno

po
→ fno fno sync

→ r

r
po
→ w fno

po
→ sta fno lwsync

→ w

w
po
→ w sta

po
→ sta w

lwsync
→ w

w
po
→ r sta

po
→ fno w

sync
→ r

x86 w
po
→ r xchg

po
→ r na

Fig. 9. Mappings A and P:rmw

choose a barrier ordering write-read (resp. write-write) pairs, i .e. Powersync (resp.
lwsync). Following Lem. 5, it enforces stability to a program for any pair (A1, A2).

H.-J. Boehm and S. Adve propose in [10] a mapping of all storesinto rmw (i .e.

xchg) on x86 (which has no fragile reads), to provide a SC semantics to C++ atomics.
We call this mapping A-x86 (for atomics), and give it in Fig. 9. For models with fragile
reads,e.g. Power, they question in [4] the existence of“more efficient mappings (than
the use of locks)”. The mapping P could be more efficient, since it removes the need
for cumulativity. Yet, mapping reads tormw introduces additional stores (issued by
stwcx.), which may impair the performance. Moreover, we have to usecumulative
barriers in the mapping P, for Power does not provide non-cumulative barriers. Yet, we
show in Sec. 5 that the mapping P is more efficient than locks onPower machines.

We propose another mapping, given in Fig. 9, which we call A-Power. All reads
and writes are mapped intormw (usingfno for reads and fetch-and-store (sta) [1, p.
719] for writes). The documentation stipulates indeed that“a processor has at most one
reservation at any time”[1, p. 663]. Hence twormw on the same processor in program
order may be preserved in this order, because the writes issued by theirstwcx., though
to different locations, would be ordered by a dependency over the reservation. Although
the documentation does not state if this dependency exists,we show in Sec. 5 that the
mapping A-Power restores SC experimentally and is more efficient than locks as well.

4 Stability from a weak architecture to SC

We now want to minimise the synchronisation that we use,i .e. we would like to syn-
chronise only the conflicting accesses (either competing accesses or fragile pairs) that
are actually necessary. For example, if in theiriw test of Fig. 2, we add a write(g) to a
fresh variablez after (in program order) the write(e) to x on P2, (e) and(g) may not
be preserved in program order,i .e. (e) and(g) may form a fragile pair. Yet, there is no
need to maintain them, since they do not contribute to the cycle we want to forbid.

D. Shasha and M. Snir provide in [27] an analysis to place barriers in a program,
in order to enforce a SC behaviour. They examine in [27, Thm. 3.9 p. 297] thecritical
cyclesof an execution, and show that placing a barrier along each program order arrow
of such a cycle (eachdelayarrow) is enough to restore SC. Yet, this work does not
provide any semantics of weak memory models. We show in Coq that their technique
applies to the models embraced by our framework,e.g. models with store buffering,
like TSO or relaxing store atomicity, like Power.

Given an architectureA and event structureE, a cycle
σ
→ ⊆ (

cmp
↔ ∪

po
→)

+

(where
cmp
↔

is the competing relation of Sec. 2) iscritical on A, writtencriticalA(E,
σ
→), when it is

not a cycle in(
cmp
↔ ∪

ppoA→ )
+ and satisfies the two following properties.(i) Per processor,

12



there are at most two memory accesses(x, y) on this processor andloc(x) 6= loc(y).
(ii) For a given memory locationx, there are at most three accesses relative tox, and
these accesses are from distinct processors (w

cmp
↔ w, w

cmp
↔ r, r

cmp
↔ w or r

cmp
↔ w

cmp
↔ r).

In Fig. 2, the execution ofiriw has a critical cycle on Power.
In our framework, we show that the execution witnessesX of an event structureE

are stable fromA to SC if and only ifE contains no critical cycle onA, i .e. that an
execution valid onA is SC if and only ifE contains no critical cycle onA:

Thm. 1. ∀E, (∀X, stableA,SC(E, X))⇔ ¬(∃
σ
→, criticalA(E,

σ
→))

This theorem means that we do not have to synchronise all the conflicts to ensure sta-
bility from a weak architecture to SC, but only those occurring in critical cycles. Hence
to restore SC, we should arbitrate (with a covering relation) the conflicting accesses
(competing accesses or fragile pairs) occurring in the critical cycles.

5 offence: a synchronisation tool
We implemented our study in our newoffence tool, illustrating techniques that can
be included in a compiler. Given a program in x86 or Power assembly, offence places
either lock-based or lock-free synchronisation along the critical cycles of its input, fol-
lowing the mapping A, P, L or F, to enforce a SC behaviour.

5.1 Control flow graphs and critical cycles

offence builds one control flow graph (cfg) per thread of the input program, containing
static events(i .e. nodes representing memory accesses), and control flow instructions.
A static memory eventf has a direction, a location, originating instruction and proces-
sor, as events do, but no value component.

Given an event structure and two eventse1

po
→ e2, mapping to static eventsf1

andf2, we compute thestatic program order
pos
→ such thate1

po
→ e2 entailsf1

pos
→ f2

using a standard forward data flow analysis. If memory locations accessed by a given
instruction are constant, we haveloc(e1) = loc(f1) and loc(e2) = loc(f2). Hence
static conflicts computed from thecfg, written

cmps
↔ , abstract the conflicts of the event

structures. When locations are not constant, we would need alias analysis to compute an
over-approximation of the locations of each static event, considering for example that
all pairs of memory accesses by distinct processors conflict, if one of them is a write.

With F the set of static events, we call the triple(F,
pos
→,

cmps
↔ ) static event structure.

Following Sec. 4, we enumerate the cycles ofF that have properties(i) and(ii) , i .e. we
build an over-approximation of the runtime critical cycles.

5.2 Placing synchronisation primitives

We then collect the fragile pairs (i.e. the write-read pairs in x86 and all pairs in Power)
occurring in the critical cycles ofF . By Thm. 1 it is necessary and sufficient to maintain
these fragile pairs to reach stability,i .e. to restore SC.

Barriers Then,offence follows the mapping F on these fragile pairs. Given a pair
(f1, f2), offence issues the barrier request(i1, i2, b) wherei1 = ins(f1), i2 = ins(f2)
andb is the required barrier. Every path fromi1 to i2 in thecfg should pass through a
barrier instructionb. We use the global barrier placement of [20], which maximises the
number of pairs maintained by a given barrier.

13



L
P
A
F
X

saumurchiantivargasabducenspower7

x86 machinesPower machines

m
ill

io
n

ou
tc

om
es

/s
ec

5

4

3

2

1

0

Fig. 10.Productivity observed during soundness experiments.

Alternative to barriersoffence can also follow the mappings A and P. For A-x86, the
xchg instruction has an implicit write-read barrier semantics [10]. Thus, we use the
global barrier placement of [20] forxchg. For locks,offence follows the mapping L
on the conflict edges of thecfg. Sec. 3.1 describes the lock and unlock idioms that we
use for Power. For x86, lock uses thexchg instruction to build a compare-and-swap
loop, while unlock uses a single store instruction.

5.3 Experiments
Generating testsWe generated two kinds of tests to exerciseoffence, using our pre-
vious diy tool [5], which computes tests in x86 or Power assembly from acycle of
relations. First, we generate tests from critical cycles,e.g. iriw in Fig. 2. Second, using
a new tool, we mix such tests: given two tests built from critical cycles, we randomly
permute processors of one of the given tests, turn its memorylocations and registers to
fresh ones, and interleave the codes of the programs. We produced two series of tests,
written X, each series consisting of209 tests for Power and58 tests for x86.

Experimental soundnessWe run these tests against hardware using ourlitmus tool [6].
We observed that all tests from the initial X series exhibit violations of SC and that the
tests transformed byoffence (following the mappings F, A, P and L) donot exhibit
violations of SC, running each test at least109 times. Thus we confirmed experimen-
tally that our mappings enforce SC, which we established formally for the mappings F
(Lem. 2), P (Lem. 5) and L (Lem. 1 and 3).

Cost measuresFig. 10 shows theproductivity, i .e. the number of outcomes per second,
for the initial series of tests X, and for the tests transformed byoffence following the
mappings F, A, P and L. We ran our tests on three Power machines: power7 (Power7,
8 cores4-ways SMT),abducens (Power6,4 cores2-ways SMT) andvargas (Power6,
32 cores2-ways SMT); and on two AMD64 machines:chianti (Intel Xeon,8 cores,
2-ways HT) andsaumur (Intel Xeon,4 cores,2-ways HT). Our mappings F, P and A
outperform the L one,i .e. provide“more efficient mappings (than the use of locks)”,
answering the question of [4].

To compare the barriers andrmw more precisely, we consider 8 specific tests from1
to 8 threads, where we add withoffence only one synchronisation primitive per thread,
and insert the code for each thread inside a tight loop. We then measure running times
on our two8 core machines,power7 andchianti, substract the time of the original

14



sta/fno
lwsync
sync

power7

nprocs =
tim

e
(µ

s)
87654321

1

0.8

0.6

0.4

0.2

0

xchg
mfence

chianti

87654321

0.2

0.1

0

Fig. 11.Time of synchronisation constructs, in microseconds.

test from the time of synchronised tests and divide the result by loop size. We give the
results in Fig. 11. While fences andrmw are fast in isolation (10–20 ns on one thread),
their cost raises to hundreds of ns when communication by shared memory occurs.

6 Related Work and Conclusion

Related workTheDRF guarantee [3, 10, 23], the semantics of synchronisation idioms
[9, 8], and the insertion of barriers [27, 14, 11, 17] have been extensively studied, but
most of these works focus on one kind of synchronisation at a time, and none of them
addresses Power traits such as cumulativity or the lack of write atomicity.

S. Burckhardt and M. Musuvathi examine in [12] whether we cansimulate a pro-
gram running on TSO by enumerating only its SC executions. They distinguish a class
of such executions, theTSO-safeones. We believe these executions to be an instance of
our stable ones,i .e. the stable executions from TSO to SC. Yet, our characterisation of
stability in the general case is a novel contribution.

J. Lee and D. Padua examine in [20] how to restore SC at compiler level: we used
their global fence placement algorithm. Our work improves on [20] w .r .t . semantical
fundations: as a result, we use Powerlwsync when possible and we do not use x86
lfence andsfence barriers, irrelevant in user-level code. Our mappings could be
included in their Java compiler [29],i .e. usinglwsync for Power, andxchg for x86.

ConclusionOur formal study of stability in weak memory models allows usto define
several mappings of Power or x86 assembly code, which, as we prove in Coq, give a
SC behaviour to a program. Along the way, we give a semantics to Power’slwarx
andstwcx. instructions and show how to use the lightweight Power barrierlwsync,
which are novel contributions. In addition, we characterise the executions stable from
a weak architecture to SC, hence generalise the result of [27] to weak memory mod-
els. Finally, we implement our study in ouroffence tool, to measure the cost of these
mappings: our lock-free mappings outperform locks on our test set. Our work could for
example benefit to compiler writers and semanticists interested in standardisation and
implementability (e.g. of Java volatiles or C++ atomics on Power platforms).

AcknowledgementsWe thank Susmit Sarkar, Peter Sewell, Michael Tautschnig, Jules
Villard and Boris Yakobowski for comments on a draft.

References

1. Power ISA Version 2.06. 2009.

15



2. S. V. Adve and K. Gharachorloo. Shared Memory ConsistencyModels: A Tutorial. IEEE
Computer, 29:66–76, 1995.

3. S. V. Adve and M. D. Hill. Weak Ordering - A New Definition. InISCA 1990.
4. S.V. Adve and H.-J. Boehm. Memory Models: A Case for Rethinking Parallel Languages

and Hardware. To appear in CACM.
5. J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in Weak Memory Models. InCAV

2010.
6. J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus:Running Tests Against Hardware.

In TACAS 2011.
7. Alpha Architecture Reference Manual, Fourth Edition, 2002.
8. H.-J. Boehm. Reordering Constraints for Pthread-Style Locks. InPPoPP 2007.
9. H.-J. Boehm. Threads Cannot Be Implemented As a Library. In PLDI 2005.

10. H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency Memory Model. InPLDI
2008.

11. S. Burckhardt, R. Alur, and M. K. Martin. Checkfence: Checking consistency of concurrent
data types on relaxed memory models. InPLDI 2007.

12. S. Burckhardt and M. Musuvathi. Effective Program Verification for Relaxed Memory Mod-
els. InCAV 2008.

13. J. Cantin, M. Lipasti, and J. Smith. The Complexity of Verifying Memory Coherence. In
SPAA 2003.

14. X. Fang, J. Lee, and S. Midkiff. Automatic fence insertion for shared memory multiprocess-
ing. In ICS 2003.

15. T. Huynh and A. Roychoudhury. A memory model sensitive checker for C#. InFM 2006.
16. Intel 64 and IA-32 Architectures Software Developer’s Manual, vol. 3A, rev. 30, March

2009.
17. M. Kuperstein, M. Vechev, and E. Yahav. Automatic inference of memory fences. InFMCAD

2010.
18. L. Lamport. How to Make a Correct Multiprocess Program Execute Correctly on a Multi-

processor.IEEE Trans. Comput., 46(7):779–782, 1979.
19. D. Lea. The JSR-133 Cookbook for Compiler Writers. September 2006.http://gee.

cs.oswego.edu/dl/jmm/cookbook.html.
20. J. Lee and D.A. Padua. Hiding relaxed memory consistencywith a compiler. IEEE Trans-

actions on Computers, 50:824–833, 2001.
21. J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In POPL 2005.
22. P. McKenney and R. Silvera. Example Power Implementation for C/C++ Mem-

ory Model. August 2008. http://www.rdrop.com/users/paulmck/
scalability/paper/N2745r.2010.02.19a.html.

23. S. Owens. Reasoning about the Implementation of Concurrency Abstractions on x86-TSO.
In ECOOP 2010.

24. S. Park and D. Dill. An executable specification, analyzer and verifier for RMO. InSPAA 95.
25. M. Rinard. Analysis of Multithreaded Programs. InSAS 2001.
26. J. Sevcik.Program Transformations in Weak Memory Models. PhD thesis, University of

Edinburgh, 2008.
27. D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs that Share

Memory. InTOPLAS 1988.
28. Sparc Architecture Manual Version 9, 1994.
29. Z. Sura, X. Fang, C.-L. Wong, S.P. Midkiff, J. Lee, and D.A. Padua. Compiler techniques

for high performance SC Java programs. InPPoPP’05. ACM, 2005.
30. Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Memory model sensitive data race analysis.

In ICFEM 2004.

16


