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diy is a tool suite for testing shared memory models. We provide several tools, litmus (Part I) for running
tests, diy generators (Part II) for producing tests from concise specifications, and herd (Part III) for simulating
memory models. In Part IV we describe a few concrete experiments, illustrating frequent usage patterns
of diy generators and of litmus. Finally (Part V), we briefly describe our experimental dont tool for either
checking the conformance of a machine to an architecture or exploring the memory model of a given machine
automatically.

The software is written in Objective Caml1, and released as sources. The web site of diy is http:

//diy.inria.fr/, authors can be contacted at diy-devel@inria.fr. This software is released under the
terms of the Lesser GNU Public License.
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Part I

Running tests with litmus

Traditionally, a litmus test is a small parallel program designed to exercise the memory model of a parallel,
shared-memory, computer. Given a litmus test in assembler (X86, Power or ARM) litmus runs the test.

Using litmus thus requires a parallel machine, which must additionally feature gcc and the pthreads
library. At the moment, litmus is a prototype and has numerous limitations (recognised instructions, limited
porting). Nevertheless, litmus should accept all tests produced by the companion diy tool and has been
successfully used on Linux, MacOS and on AIX.

The authors of litmus are Luc Maranget and Susmit Sarkar. The present litmus is inspired from a
prototype by Thomas Braibant and Francesco Zappa Nardelli.

1 A tour of litmus

1.1 A simple run

Consider the following (rather classical, store buffering) SB.litmus litmus test for X86:

X86 SB

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EAX,[x] ;

exists (0:EAX=0 /\ 1:EAX=0)

A litmus test source has three main sections:

1. The initial state defines the initial values of registers and memory locations. Initialisation to zero may
be omitted.

2. The code section defines the code to be run concurrently — above there are two threads. Yes we know,
our X86 assembler syntax is a mistake.

3. The final condition applies to the final values of registers and memory locations.

Run the test by:

% litmus SB.litmus

%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for SB.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%

X86 SB

"Fre PodWR Fre PodWR"

{x=0; y=0;}

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EAX,[x] ;

exists (0:EAX=0 /\ 1:EAX=0)

Generated assembler
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#START _litmus_P1

movl $1,(%r10)

movl (%r9),%eax

#START _litmus_P0

movl $1,(%r9)

movl (%r10),%eax

Test SB Allowed

Histogram (4 states)

40 *>0:EAX=0; 1:EAX=0;

499923:>0:EAX=1; 1:EAX=0;

500009:>0:EAX=0; 1:EAX=1;

28 :>0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 40, Negative: 999960

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

Observation SB Sometimes 40 999960

Time SB 0.44

...

The litmus test is first reminded, followed by actual assembler — the machine is a 64 bits one, in-line address
references disappeared, registers may change, and assembler syntax is now more familiar. The test has run
one million times, producing one million final states, or outcomes for the registers EAX of threads P0 and P1.
The test run validates the condition, with 40 positive witnesses.

1.2 Cross compilation

With option -o <name.tar>, litmus does not run the test. Instead, it produces a tar archive that contains
the C sources for the test.

Consider SB-PPC.litmus, a Power version of the previous test:

PPC SB-PPC

"Fre PodWR Fre PodWR"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r4) | lwz r3,0(r4) ;

exists (0:r3=0 /\ 1:r3=0)

Our target machine (ppc) runs MacOS, which we specify with the -os option:

% litmus -o /tmp/a.tar -os mac SB-PPC.litmus

% scp /tmp/a.tar ppc:/tmp

Then, on the remote machine ppc:
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ppc% mkdir SB && cd SB

ppc% tar xf /tmp/a.tar

ppc% ls

comp.sh Makefile outs.c outs.h README.txt run.sh SB-PPC.c show.awk utils.c utils.h

Test is compiled by the shell script comp.sh (or by (Gnu) make, at user’s choice) and run by the shell script
run.sh:

ppc% sh comp.sh

ppc% sh run.sh

...

Test SB-PPC Allowed

Histogram (3 states)

1784 *>0:r3=0; 1:r3=0;

498564:>0:r3=1; 1:r3=0;

499652:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 1784, Negative: 998216

Condition exists (0:r3=0 /\ 1:r3=0) is validated

Hash=4edecf6abc507611612efaecc1c4a9bc

Observation SB-PPC Sometimes 1784 998216

Time SB-PPC 0.55

...

As we see, the condition validates also on Power. Notice that compilation produces an executable file,
SB-PPC.exe, which can be run directly, for a less verbose output.

1.3 Running several tests at once

Consider the additional test STFW-PPC.litmus:

PPC STFW-PPC

"Rfi PodRR Fre Rfi PodRR Fre"

{

0:r2=x; 0:r5=y;

1:r2=y; 1:r5=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) ;

lwz r4,0(r5) | lwz r4,0(r5) ;

exists

(0:r3=1 /\ 0:r4=0 /\ 1:r3=1 /\ 1:r4=0)

To compile the two tests together, we can give two file names as arguments to litmus:

$ litmus -o /tmp/a.tar -os mac SB-PPC.litmus STFW-PPC.litmus

Or, more conveniently, list the litmus sources in a file whose name starts with @:

$ cat @ppc

SB-PPC.litmus
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STFW-PPC.litmus

$ litmus -o /tmp/a.tar -os mac @ppc

To run the test on the remote ppc machine, the same sequence of commands as in the one test case applies:

ppc% tar xf /tmp/a.tar && make && sh run.sh

...

Test SB-PPC Allowed

Histogram (3 states)

1765 *>0:r3=0; 1:r3=0;

498741:>0:r3=1; 1:r3=0;

499494:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 1765, Negative: 998235

Condition exists (0:r3=0 /\ 1:r3=0) is validated

Hash=4edecf6abc507611612efaecc1c4a9bc

Observation SB-PPC Sometimes 1765 998235

Time SB-PPC 0.57

...

Test STFW-PPC Allowed

Histogram (4 states)

480 *>0:r3=1; 0:r4=0; 1:r3=1; 1:r4=0;

499560:>0:r3=1; 0:r4=1; 1:r3=1; 1:r4=0;

499827:>0:r3=1; 0:r4=0; 1:r3=1; 1:r4=1;

133 :>0:r3=1; 0:r4=1; 1:r3=1; 1:r4=1;

Ok

Witnesses

Positive: 480, Negative: 999520

Condition exists (0:r3=1 /\ 0:r4=0 /\ 1:r3=1 /\ 1:r4=0) is validated

Hash=92b2c3f6332309325000656d0632131e

Observation STFW-PPC Sometimes 480 999520

Time STFW-PPC 0.56

...

Now, the output of run.sh shows the result of two tests.

2 Controlling test parameters

Users can control some of testing conditions. Those impact efficiency and outcome variability.
Sometimes one looks for a particular outcome— for instance, one may seek to get the outcome 0:r3=1; 1:r3=1;

that is missing in the previous experiment for test SB-PPC. To that aim, varying test conditions may help.

2.1 Architecture of tests

Consider a test a.litmus designed to run on t threads P0,. . . , Pt−1. The structure of the executable a.exe
that performs the experiment is as follows:

• So as to benefit from parallelism, we run n = max(1, a/t) (integer division) tests concurrently on a
machine where a logical processors are available.
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• Each of these (identical) tests consists in repeating r times the following sequence:

– Fork t (POSIX) threads T0, . . . Tt−1 for executing P0,. . . , Pt−1. Which thread executes which
code is either fixed, or changing, controlled by the launch mode. In our experience, the launch
mode has marginal impact.

In cache mode the Tk threads are re-used. As a consequence, t threads only are forked.

– Each thread Tk executes a loop of size s. Loop iteration number i executes the code of Pk (in
fixed mode) and saves the final contents of its observed registers in some arrays indexed by i.
Furthermore, still for iteration i, memory location x is in fact an array cell.

How this array cell is accessed depends upon the memory mode. In direct mode the array cell is
accessed directly as x[i]; as a result, cells are accessed sequentially and false sharing effects are
likely. In indirect mode the array cell is accessed by the means of a shuffled array of pointers; as
a result we observed a much greater variability of outcomes. Additionally, the increment of the
main loop (of size s) can be set to a value or stride different from the default of one. Running a
test several times with changing the stride value also proved quite effective in favouring outcome
variability.

If the random preload mode is enabled, a preliminary loop of size s reads a random subset of the
memory locations accessed by Pk. Preload have a noticeable effect and teh random preload mode
is enabled by default. Starting from version 5.0, we provide a more precise control over preloading
memory locations — See Sec. 3.2.

The iterations performed by the different threads Tk may be unsynchronised, exactly synchronised
by a pthread based barrier, or approximately synchronised by specific code. Absence of synchro-
nisation may be interesting when t exceeds a. As a matter of fact, in this situation, any kind
of synchronisation leads to prohibitive running times. However, for a large value of parameter s
and small t we have observed spontaneous concurrent execution of some iterations amongst many.
Pthread based barriers are exact but they are slow and in fact offers poor synchronisation for
short code sequences. The approximate synchronisation is thus the preferred technique.

Starting from version 5.0, we provide a slightly altered user synchronisation mode: userfence,
which alters user mode by executing memory fences to speedup write propagation. The new
mode features overall better synchronisation, yielding dramatic improvements on some examples.
However, outcome variability may suffer from this more accurate synchronisation, hence user
mode remains the default.

More importantly, we provide an additional exact, timebase synchronisation technique: test
threads will first synchronise using polling synchronisation barrier code, agree on a target time-
base2 value and then loop reading the timebase until it exceeds the target value. This technique
yields very good synchronisation and allows fine synchronisation tuning by assigning different
starting delays to different threads — see Sec. 3.1. As ARM does not provide timebase coun-
ters, notice that “timebase” synchronisation for ARM silently degrades to synchronisation by the
means of the polling synchronisation barrier.

– Wait for the t threads to terminate and collect outcomes in some histogram like structure.

• Wait for the n tests to terminate and sum their histograms.

Hence, running a.exe produces n × r × s outcomes. Parameters n, a, r and s can first be set di-
rectly while invoking a.exe, using the appropriate command line options. For instance, assuming t = 2,
./a.exe -a 201 -r 10k -s 1 and ./a.exe -n 1 -r 1 -s 1M will both produce one million outcomes,
but the latter is probably more efficient. If our machine has 8 cores, ./a.exe -a 8 -r 1 -s 1M will yield
4 millions outcomes, in a time that we hope not to exceed too much the one experienced with ./a.exe -n 1.
Also observe that the memory allocated is roughly proportional to n × s, while the number of Tk threads

2Power and x86-based systems provide a user accessible timebase counter that should provide consistent times to all cores

and processors.
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created will be t × n × r (t × n in cache mode). The run.sh shell script transmits its command line to all
the executable (.exe) files it invokes, thereby providing a convenient means to control testing condition for
several tests. Satisfactory test parameters are found by experimenting and the control of executable files by
command line options is designed for that purpose.

Once satisfactory parameters are found, it is a nuisance to repeat them for every experiment. Thus,
parameters a, r and s can also be set while invoking litmus, with the same command line options. In fact
those settings command he default values of .exe files controls. Additionally, the synchronisation technique
for iterations, the memory mode, and several others compile time parameters can be selected by appropriate
litmus command line options. Finally, users can record frequently used parameters in configuration files.

2.2 Affinity

We view affinity as a scheduler property that binds a (software, POSIX) thread to a given (hardware)
logical processor. In the most simple situation a logical processor is a core. However in the presence of
hyper-threading (x86) or simultaneous multi threading (SMT, Power) a given core can host several logical
processors.

2.2.1 Introduction to affinity

In our experience, binding the threads of test programs to selected logical processors yields significant
speedups and, more importantly, greater outcome variety. We illustrate the issue by the means of an
example.

We consider the test ppc-iriw-lwsync.litmus:

PPC ppc-iriw-lwsync

{

0:r2=x; 1:r2=x; 1:r4=y;

2:r4=y; 3:r2=x; 3:r4=y;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r4) ;

stw r1,0(r2) | lwsync | stw r1,0(r4) | lwsync ;

| lwz r3,0(r4) | | lwz r3,0(r2) ;

exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0)

The test consists of four threads. There are two writers (P0 and P2) that write the value one into two different
locations (x and y), and two readers that read the contents of x and y in different orders — P1 reads x first,
while P3 reads y first. The load instructions lwz in reader threads are separated by a lightweight barrier
instruction lwsync. The final condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) characterises
the situation where the reader threads see the writes by P0 and P2 in opposite order. The corresponding
outcome 1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0; is the only non-sequential consistent (non-SC, see Part II)
possible outcome. By any reasonable memory model for Power, one expects the condition to validate, i.e.
the non-SC outcome to show up.

The tested machine vargas is a Power 6 featuring 32 cores (i.e. 64 logical processors, since SMT is
enabled) and running AIX in 64 bits mode. So as not to disturb other users, we run only one instance of
the test, thus specifying four available processors. The litmus tool is absent on vargas. All these conditions
command the following invocation of litmus, performed on our local machine:

$ litmus -r 1000 -s 1000 -a 4 -os aix -ws w64 ppc-iriw-lwsync.litmus -o ppc.tar

$ scp ppc.tar vargas:/var/tmp

On vargas we unpack the archive and compile the test:

vargas% tar xf /var/tmp/ppc.tar && sh comp.sh
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Then we run the test:

vargas% ./ppc-iriw-lwsync.exe

Test ppc-iriw-lwsync Allowed

Histogram (15 states)

163674:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

34045 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

40283 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

95079 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

33848 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

72201 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

32452 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

43031 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

73052 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

1 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

42482 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

90470 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

30306 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

43239 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

205837:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation ppc-iriw-lwsync Never 0 1000000

Time ppc-iriw-lwsync 1.32

The non-SC outcome does not show up.
Altering parameters may yield this outcome. In particular, we may try using all the available logical

processors with option -a 64. Affinity control offers an alternative, which is enabled at compilation time
with litmus option -affinity:

$ litmus ... -affinity incr1 ppc-iriw-lwsync.litmus -o ppc.tar

$ scp ppc.tar vargas:/var/tmp

Option -affinity takes one argument (incr1 above) that specifies the increment used while allocating
logical processors to test threads. Here, the (POSIX) threads created by the test (named T0, T1, T2 and T3

in Sec. 2.1) will get bound to logical processors 0, 1, 2, and 3, respectively.
Namely, by default, the logical processors are ordered as the sequence 0, 1, . . . , A − 1 — where A is

the number of available logical processors, which is inferred by the test executable3. Furthermore, logical
processors are allocated to threads by applying the affinity increment while scanning the logical processor
sequence. Observe that since the launch mode is changing (the default) threads Tk correspond to different
test threads Pi at each run. The unpack compile and run sequence on vargas now yields the non-SC
outcome, better outcome variety and a lower running time:

vargas% tar xf /var/tmp/ppc.tar && sh comp.sh

vargas% ./ppc-iriw-lwsync.exe

Test ppc-iriw-lwsync Allowed

3Parameter A is not to be confused with a of section 2.1. The former serves to compute logical threads while the latter

governs the number of tests that run simultaneously. However parameters a will be set to A when affinity control is enabled

and when a value is 0.
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Histogram (16 states)

180600:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

3656 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

18812 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

77692 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

2973 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

9 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

28881 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

75126 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

20939 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

30498 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

1234 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

89993 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

75769 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

76361 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

87864 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

229593:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

Ok

Witnesses

Positive: 9, Negative: 999991

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation ppc-iriw-lwsync Sometimes 9 999991

Time ppc-iriw-lwsync 0.68

One may change the affinity increment with the command line option -i of executable files. For instance,
one binds the test threads to logical processors 0, 2, 4 and 6 as follows:

vargas% ./ppc-iriw-lwsync.exe -i 2

Test ppc-iriw-lwsync Allowed

Histogram (15 states)

160629:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

33389 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

43725 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

93114 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

33556 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

64875 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

34908 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

43770 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

64544 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

4 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

54633 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

92617 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

34754 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

54027 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

191455:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d
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Observation ppc-iriw-lwsync Never 0 1000000

Time ppc-iriw-lwsync 0.92

One observes that the non-SC outcome does not show up with the new affinity setting.
One may also bind test thread to logical processors randomly with executable option +ra.

vargas% ./ppc-iriw-lwsync.exe +ra

Test ppc-iriw-lwsync Allowed

Histogram (15 states)

...

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation ppc-iriw-lwsync Never 0 1000000

Time ppc-iriw-lwsync 1.85

As we see, the condition does not validate either with random affinity. As a matter of fact, logical
processors are taken at random in the sequence 0, 1, . . . , 63; while the successful run with -i 1 took them
in the sequence 0, 1, 2, 3. One can limit the sequence of logical processor with option -p, which takes a
sequence of logical processors numbers as argument:

vargas% ./ppc-iriw-lwsync.exe +ra -p 0,1,2,3

Test ppc-iriw-lwsync Allowed

Histogram (16 states)

...

8 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

...

Ok

Witnesses

Positive: 8, Negative: 999992

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation ppc-iriw-lwsync Sometimes 8 999992

Time ppc-iriw-lwsync 0.70

The condition now validates.

2.2.2 Study of affinity

As illustrated by the previous example, both the running time and the outcomes of a test are sensitive to
affinity settings. We measured running time for increasing values of the affinity increment from 0 (which
disables affinity control) to 20, producing the following figure:
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As regards outcome variety, we get all of the 16 possible outcomes only for an affinity increment of 1.
The differences in running times can be explained by reference to the mapping of logical processors to

hardware. The machine vargas consists in four MCM’s (Multi-Chip-Module), each MCM consists in four
“chips”, each chip consists in two cores, and each core may support two logical processors. As far as we
know, by querying vargaswith the AIX commands lsattr, bindprocessor and llstat, the MCM’s hold the
logical processors 0–15, 16–31, 32–47 and 48–63, each chip holds the logical processors 4k, 4k+1, 4k+2, 4k+3
and each core holds the logical processors 2k, 2k + 1.

The measure of running times for varying increments reveals two noticeable slowdowns: from an increment
of 1 to an increment of 2 and from 5 to 6. The gap between 1 and 2 reveals the benefits of SMT for our
testing application. An increment of 1 yields both the greatest outcome variety and the minimal running
time. The other gap may perhaps be explained by reference to MCM’s: for a value of 5 the tests runs on the
logical processors 0, 5, 10, 15, all belonging to the same MCM; while the next affinity increment of 6 results
in running the test on two different MCM (0, 6, 12 on the one hand and 18 on the other).

As a conclusion, affinity control provides users with a certain level of control over thread placement,
which is likely to yield faster tests when threads are constrained to run on logical processors that are “close”
one to another. The best results are obtained when SMT is effectively enforced. However, affinity control
is no panacea, and the memory system may be stressed by other means, such as, for instance, allocating
important chunks of memory (option -s).

2.2.3 Advanced control

For specific experiments, the technique of allocating logical processors sequentially by following a fixed
increment may be two rigid. litmus offers a finer control on affinity by allowing users to supply the logical
processors sequence. Notice that most users will probably not need this advanced feature.

Anyhow, so as to confirm that testing ppc-iriw-lwsync benefits from not crossing chip boundaries, one
may wish to confine its four threads to logical processors 16 to 19, that is to the first chip of the second
MCM. This can be done by overriding the default logical processors sequence by an user supplied one given
as an argument to command-line option -p:

vargas% ./ppc-iriw-lwsync.exe -p 16,17,18,19 -i 1

Test ppc-iriw-lwsync Allowed

Histogram (16 states)
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169420:>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

1287 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

17344 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

85329 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

1548 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

3 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

27014 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

75160 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

19828 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

29521 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

441 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=1;

93878 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

81081 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

76701 :>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

93623 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

227822:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

Ok

Witnesses

Positive: 3, Negative: 999997

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation ppc-iriw-lwsync Sometimes 3 999997

Time ppc-iriw-lwsync 0.63

Thus we get results similar to the previous experiment on logical processors 0 to 3 (option -i 1 alone).
We may also run four simultaneous instances (-n 4, parameter n of section 2.1) of the test on the four

available MCM’s:

vargas% ./ppc-iriw-lwsync.exe -p 0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51 -n 4 -i 1

Test ppc-iriw-lwsync Allowed

Histogram (16 states)

...

57 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

...

Ok

Witnesses

Positive: 57, Negative: 3999943

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=4fbfaafa51f6784d699e9bdaf5ba047d

Observation ppc-iriw-lwsync Sometimes 57 3999943

Time ppc-iriw-lwsync 0.75

Observe that, for a negligible penalty in running time, the number of non-SC outcomes increases significantly.
By contrast, binding threads of a given instance of the test to different MCM’s results in poor running

time and no non-SC outcome.

vargas% ./ppc-iriw-lwsync.exe -p 0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51 -n 4 -i 4

Test ppc-iriw-lwsync Allowed

Histogram (15 states)

...

Witnesses
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Positive: 0, Negative: 4000000

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is NOT validated

Time ppc-iriw-lwsync 1.48

In the experiment above, the increment is 4, hence the logical processors allocated to the first instance of
the test are 0, 16, 32, 48, of which indices in the logical processors sequence are 0, 4, 8, 12, respectively. The
next allocated index in the sequence is 12 + 4 = 16. However, the sequence has 16 items. Wrapping around
yields index 0 which happens to be the same as the starting index. Then, so as to allocate fresh processors,
the starting index is incremented by one, resulting in allocating processors 1, 17, 33, 49 (indices 1, 5, 9, 13)
to the second instance — see section 2.3 for the full story. Similarly, the third and fourth instances will
get processors 2, 18, 34, 50 and 3, 19, 35, 51, respectively. Attentive readers may have noticed that the same
experiment can be performed with option -i 16 and no -p option.

Finally, users should probably be aware that at least some versions of Linux for x86 feature a less obvious
mapping of logical processors to hardware. On a bi-processor, dual-core, 2-ways hyper-threading, Linux,
AMD64 machine, we have checked that logical processors residing on the same core are k and k + 4, where
k is an arbitrary core number ranging from 0 to 3. As a result, a proper choice for favouring effective hyper-
threading on such a machine is -i 4 (or -p 0,4,1,5,2,6,3,7 -i 1). More worthwhile noticing, perhaps,
the straightforward choice -i 1 disfavours effective hyper-threading. . .

2.2.4 Custom control

Most tests run by litmus are produced by the litmus test generators described in Part II. Those tests include
meta-information that may direct affinity control. For instance we generate one test with the diyone tool, see
Sec. 5.2. More specifically we generate IRIW+lwsyncs for Power (ppc-iriw-lwsync in the previous section)
as follows:

% diyone -arch PPC -name IRIW+lwsyncs Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre

We get the new source file IRIW+lwsyncs.litmus:

PPC IRIW+lwsyncs

"Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre"

Prefetch=0:x=T,1:x=F,1:y=T,2:y=T,3:y=F,3:x=T

Com=Rf Fr Rf Fr

Orig=Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre

{

0:r2=x;

1:r2=x; 1:r4=y;

2:r2=y;

3:r2=y; 3:r4=x;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) ;

stw r1,0(r2) | lwsync | stw r1,0(r2) | lwsync ;

| lwz r3,0(r4) | | lwz r3,0(r4) ;

exists

(1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0)

The relevant meta-information is the “Com” line that describes how test threads are related — for instance,
thread 0 stores a value to memory that is read by thread 1, written “Rf” (see Part II for more details).
Custom affinity control will tend to run threads related by “Rf” on “close” logical processors, where we
can for instance consider that close logical processors belong to the same physical core (SMT for Power).
This minimal logical processor topology is described by two litmus command-line option: -smt <n> that
specifies n-way SMT; and -smt mode (seq|end) that specifies how logical processors from the same core
are numbered. For a 8-cores 4-ways SMT power7 machine we invoke litmus as follows:
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% litmus -mem direct -smt 4 -smt_mode seq -affinity custom -o a.tar IRIW+lwsyncs.litmus

Notice that memory mode is direct and that the number of available logical processors is unspecified, resulting
in running one instance of the test. More importantly, notice that affinity control is enabled -affinity

custom, additionally specifying custom affinity mode.
We then upload the archive a.tar to our Power7 machine, unpack, compile and run the test:

power7% tar xmf a.tar

power7% make

...

power7% ./IRIW+lwsyncs.exe -v

./IRIW+lwsyncs.exe -v

IRIW+lwsyncs: n=1, r=1000, s=1000, +rm, +ca, p=’0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22

thread allocation:

[23,22,3,2] {5,5,0,0}

Option -v instructs the executable to show settings of the test harness: we see that one instance of the
test is run (n=1), size parameters are reminded (r=1000, s=1000) and shuffling of indirect memory mode is
performed (+rm). Affinity settings are also given: mode is custom (+ca) and the logical processor sequence
inferred is given (-p 0,1,...,31). Additionally, the allocation of test threads to logical processors is given,
as [...], as well as the allocation of test threads to physical cores, as {...}.

Here is the run output proper:

Test IRIW+lwsyncs Allowed

Histogram (15 states)

2700 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=0;

142 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=0;

37110 :>1:r1=0; 1:r3=1; 3:r1=0; 3:r3=0;

181257:>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=0;

78 :>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=0;

15 *>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=0;

103459:>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=0;

149486:>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=0;

30820 :>1:r1=0; 1:r3=0; 3:r1=0; 3:r3=1;

9837 :>1:r1=1; 1:r3=0; 3:r1=0; 3:r3=1;

2399 :>1:r1=1; 1:r3=1; 3:r1=0; 3:r3=1;

204629:>1:r1=0; 1:r3=0; 3:r1=1; 3:r3=1;

214700:>1:r1=1; 1:r3=0; 3:r1=1; 3:r3=1;

5186 :>1:r1=0; 1:r3=1; 3:r1=1; 3:r3=1;

58182 :>1:r1=1; 1:r3=1; 3:r1=1; 3:r3=1;

Ok

Witnesses

Positive: 15, Negative: 999985

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is validated

Hash=836eb3085132d3cb06973469a08098df

Com=Rf Fr Rf Fr

Orig=Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre

Affinity=[2, 3] [0, 1] ; (1,2) (3,0)

Observation IRIW+lwsyncs Sometimes 15 999985

Time IRIW+lwsyncs 0.70

As we see, the test validates. Namely we observe the non-SC behaviour of IRIW in spite of the presence
of two lwsync barriers. We may also notice, in the executable output some meta-information related to
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affinity: it reads that threads 2 and 3 on the one hand and threads 0 and 1 on the other are considered
“close” (i.e. will run on the same physical core); while threads 1 and 2 on the one hand and threads 3 and 0
on the other are considered “far” (i.e. will run on different cores).

Custom affinity can be disabled by enabling another affinity mode. For instance with -i 0 we specify an
affinity increment of zero. That is, affinity control is disabled altogether:

power7% ./IRIW+lwsyncs.exe -i 0 -v

./IRIW+lwsyncs.exe -i 0 -v

IRIW+lwsyncs: n=1, r=1000, s=1000, +rm, i=0, p=’0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22

Test IRIW+lwsyncs Allowed

Histogram (15 states)

...

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r3=0) is NOT validated

Hash=836eb3085132d3cb06973469a08098df

Com=Rf Fr Rf Fr

Orig=Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre

Observation IRIW+lwsyncs Never 0 1000000

Time IRIW+lwsyncs 0.90

As we see, the test does not validate under those conditions.
Notice that section 17 describes a complete experiment on affinity control.

2.3 Controlling executable files

Test conditions Any executable file produced by litmus accepts the following command line options.

-v Be verbose, can be repeated to increase verbosity. Specifying -v is a convenient way to look at the default
of options.

-q Be quiet.

-a <n> Run maximal number of tests concurrently for n available logical processors — parameter a in
Sec. 2.1. Notice that if affinity control is enabled (see below), -a 0 will set parameter a to the number
of logical processors effectively available.

-n <n> Run n tests concurrently — parameter n in Sec. 2.1.

-r <n> Perform n runs — parameter r in Sec. 2.1.

-fr <f> Multiply r by f (f is a floating point number).

-s <n> Size of a run — parameter s in Sec. 2.1.

-fs <f> Multiply s by f .

-f <f> Multiply s by f and divide r by f .

Notice that options -s and -r accept a generalised syntax for their integer argument: when suffixed by k

(resp. M) the integer gets multiplied by 103 (resp. 106).
The following options are accepted only for tests compiled in indirect memory mode (see Sec. 2.1):

-rm Do not shuffle pointer arrays, resulting a behaviour similar do direct mode, without recompilation.
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+rm Shuffle pointer arrays, provided for regularity.

The following option is accepted only for tests compiled with a specified stride value (see Sec. 2.1).

-st <n> Change stride to <n>. The default stride is specified at compile time by litmus option -stride.

The following option is accepted when enabled at compile time:

-l <n> Insert the assembly code of each thread in a loop of size <n>.

Affinity If affinity control has been enabled at compilation time (for instance, by supplying option -affinity
incr1 to litmus), the executable file produced by litmus accepts the following command line options.

-p <ns> Logical processors sequence. The sequence <ns> is a comma separated list of integers, The default
sequence is inferred by the executable as 0, 1, . . . , A − 1, where A is the number of logical processors
featured by the tested machine; or is a sequence specified at compile time with litmus option -p.

-i <n> Increment for allocating logical processors to threads. Default is specified at compile time by litmus
option -affinity incr<n>. Notice that -i 0 disable affinity and that .exe files reject the -i option
when affinity control has not been enabled at compile time.

+ra Perform random allocation of affinity at each test round.

+ca Perform custom affinity.

Notice that when custom affinity is not available, would it be that the test source lacked meta-information
or that logical processor topology was not specified at compile-time, then +ca behaves as +ra.

Logical processors are allocated test instance by test instance (parameter n of Sec. 2.1) and then thread by
thread, scanning the logical processor sequence left-to-right by steps of the given increment. More precisely,
assume a logical processor sequence P = p0, p1, . . . , pA−1 and an increment i. The first processor allocated
is p0, then pi, then p2i etc, Indices in the sequence P are reduced modulo A so as to wrap around. The
starting index of the allocation sequence (initially 0) is recorded, and coincidence with the index of the next
processor to be allocated is checked. When coincidence occurs, a new index is computed, as the previous
starting index plus one, which also becomes the new starting index. Allocation then proceeds from this new
starting index. That way, all the processors in the sequence will get allocated to different threads naturally,
provided of course that less than A threads are scheduled to run. See section 2.2.3 for an example with
A = 16 and i = 4.

3 Advanced control of test parameters

3.1 Timebase synchronisation mode

Timebase synchronisation of the testing loop iterations (see Sec. 2.1) is selected by litmus command line
option -barrier timebase. In that mode, test threads will first synchronise using polling synchronisation
barrier code, agree on a target timebase value and then loop reading the timebase until it exceeds the target
value. Some tests demonstrate that timebase synchronisation is more precise than user synchronisation
(-barrier user and default).

For instance, consider the x86 test 6.SB, a 6-thread analog of the SB test:

X86 6.SB

"Fre PodWR Fre PodWR Fre PodWR Fre PodWR Fre PodWR Fre PodWR"

{

}

P0 | P1 | P2 | P3 | P4 | P5 ;

MOV [x],$1 | MOV [y],$1 | MOV [z],$1 | MOV [a],$1 | MOV [b],$1 | MOV [c],$1 ;
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MOV EAX,[y] | MOV EAX,[z] | MOV EAX,[a] | MOV EAX,[b] | MOV EAX,[c] | MOV EAX,[x] ;

exists

(0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0)

As for SB, the final condition of 6.SB identifies executions where each thread loads the initial value 0 of a
location that is writtent into by another thread.

Thread 0

a: Wx=1

b: Ry=0 l: Rx=0

c: Wy=1

Thread 1

d: Rz=0

e: Wz=1

Thread 2

f: Ra=0

g: Wa=1

Thread 3

h: Rb=0

i: Wb=1

Thread 4

j: Rc=0

k: Wc=1

Thread 5

po frfr po
fr

po
fr

po fr po
fr

po

rf
rf rf rf

rf
rf

We first compile the test in user synchronisation mode, saving litmus output files into the directory R:

% mkdir -p R

% litmus -barrier user -vb true -o R 6.SB.litmus

% cd R

% make

The additional command line option -vb true activates the printing of some timing information on syn-
chronisations.

We then directly run the test executable 6.SB.exe:

% ./6.SB.exe

Test 6.SB Allowed

Histogram (62 states)

7569 :>0:EAX=1; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

8672 :>0:EAX=0; 1:EAX=1; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

326 :>0:EAX=1; 1:EAX=0; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

907 :>0:EAX=0; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0) is NOT validated

Hash=107f1303932972b3abace3ee4027408e

Observation 6.SB Never 0 1000000

Time 6.SB 0.85

The targeted outcome — reading zero in the EAX registers of the 6 threads — is not observed. We can
observe synchronisation times for all tests runs with the executable command line option +vb:

% ./6.SB.exe +vb

99999: 162768 420978 564546 -894 669468

99998: -93 3 81 -174 -651
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99997: -975 -30 -33 93 -192

99996: 990 1098 852 1176 774

...

We see five columns of numbers that list, for each test run, the starting delays of P1, P2 etc. with respect
to P0, expressed in timebase ticks. Obviously, synchronisation is rather loose, there are always two threads
whose starting delays differ of about 1000 ticks.

We now compile the same test in timebase synchronisation mode, saving litmus output files into the
pre-existing directory RT:

% mkdir -p RT

% litmus -barrier timebase -vb true -o RT 6.SB.litmus

% cd RT

% make

And we run the test directly (option -vb disable the printing of any synchronisation timing information):

% ./6.SB.exe -vb

Test 6.SB Allowed

Histogram (64 states)

60922 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

38299 :>0:EAX=1; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

598 :>0:EAX=0; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

142 :>0:EAX=1; 1:EAX=1; 2:EAX=1; 3:EAX=1; 4:EAX=1; 5:EAX=1;

Ok

Witnesses

Positive: 60922, Negative: 939078

Condition exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0) is validated

Hash=107f1303932972b3abace3ee4027408e

Observation 6.SB Sometimes 60922 939078

Time 6.SB 1.62

We now see that the test validates. Moreover all of the 64 possible outcomes are observed.
Timebase synchronisation works as follows: at every iteration,

1. one of the threads reads timebase T ;

2. all threads synchronise by the means of a polling synchronisation barrier;

3. each thread computes Ti = T + δi, where δi is the timebase delay, a thread specific constant;

4. each thread loops, reading the timebase until the read value exceeds Ti.

By default the timebase delay δi is 2
11 = 2048 for all threads.

The precision of timebase synchronisation can be illustrated by enabling the printing of all synchronisation
timings:

% ./6.SB.exe +vb

99999: 672294[1] 671973[1] 672375[1] 672144[1] 672303[1] 672222[1]

99998: 4524[1] 4332[1] 4446[1] 2052[65] 2064[73] 4095[1]

...

99983: 4314[1] 3036[1] 3141[1] 2769[1] 4551[1] 3243[1]

99982:* 2061[36] 2064[33] 2067[11] 2079[12] 2064[14] 2064[24]

99981: 2121[1] 2382[1] 2586[1] 2643[1] 2502[1] 2592[1]

...
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For each test iteration and each thread, two numbers are shown (1) the last timebase value read by and (2)
(in brackets [. . . ]) how many iterations of loop 4. were performed. Additionally a star “*” indicates the
occurrence of the targeted outcome. Here, we see that a nearly perfect synchronisation can be achieved (cf.
line 99982: above).

Once timebase synchronisation have been selected (litmus option -barrier timebase), test executable
behaviour can be altered by the following two command line options:

-ta <n> Change the timebase delay δi of all threads.

-tb <0:n0;1:n1;· · ·> Change the timebase delay δi of individual threads.

The litmus command line option -vb true (verbose barrier) governs the printing of synchronisation
timings. It comes handy when choosing values for the -ta and -tb options. When set, the executable show
synchronisation timings for outcomes that validate the test final condition. This default behaviour can be
altered with the following two command line options:

-vb Do not show synchronisation timings.

+vb Show synchronisation timings for all outcomes.

Synchronisation timings are expressed in timebase ticks. The format depends on the synchronisation mode
(litmus option -barrier). This section just gave two examples for user mode (timings are show as differences
from thread P0); and for timebase mode (timings are shown as differences from a commonly agreed by all
thread timebase value). Notice that, when affinity control is enabled, the running logical processors of
threads are also shown.

3.2 Advanced prefetch control

Supplying the tags custom, static, static1 or static2 to litmus command line option -preload commands
the insertion of cache prefetch or flush instructions before every test instance.

In custom mode the execution of such cache management instruction is under total user control, the
other, “static”, modes offer less control to the user, for the sake of not altering test code proper.

3.2.1 Custom prefetch

Custom prefetch mode offers complete control over cache management instructions. Users enable this mode
by supplying the command line option -preload custom to litmus. For instance one may compile the x86
test 6.SB.litmus as follows:

% mkdir -p R

% litmus -mem indirect -preload custom -o R 6.SB.litmus

% cd R

% make

Notice the test is compiled in indirect memory mode, in order to reduce false sharing effects.
The executable 6.SB.exe accepts two new command line options: -prf and -pra. Those options takes

arguments that describe cache management instructions. The option -pra takes one letter that stands for a
cache management instruction as we here describe:

I: do nothing, F: cache flush, T: cache touch, W: cache touch for a write.

All those cache management instructions are not provided by all architectures, in case some instruction is
missing, the letters behave as follows:

F: do nothing, T: do nothing, W: behave as T.

With -pra X the commanded action applies to all threads and all variables, for instance:
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% ./6.SB.exe -pra T

will perform a run where every test thread touches the test locations that it refers to (i.e. x and y for
Thread 0, y and z for Thread 1, etc.) before executing test code proper. Although one may achieve
interesting results by using this -pra option, the more selective -prf option should prove more useful.
The -prf option takes a comma separated list of cache managment directives. A cache management di-
rective is n:loc=X , where n is a thread number, loc is a program variable, and X is a cache manage-
ment controle letter. For instance, -prf 0:y=T instructs thread 0 to touch location y. More generally,
having each thread of the test 6.SB to touch the memory location it reads with its second instruction
would favor reading the initial value of these locations, and thus validating the final condition of the test
“(0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0 /\ 3:EAX=0 /\ 4:EAX=0 /\ 5:EAX=0)”.

Notice that those locations can be found by looking at the test code or at the diagram of the target
execution. Let us have a try:

./6.SB.exe -prf 0:y=T,1:z=T,2:a=T,3:b=T,4:c=T,5:x=T

Test 6.SB Allowed

Histogram (63 states)

10 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

Witnesses

Positive: 10, Negative: 999990

...

Prefetch=0:y=T,1:z=T,2:a=T,3:b=T,4:c=T,5:x=T

...

As can be seen, the final condition is validated. Also notice that the prefetch directives used during the run
are reminded. If given several times, -prf options cumulate, the rightmost directives taking precedence in
case of ambiguity. As a consequence, one may achieve the same prefetching effect as above with:

% ./6.SB.exe -prf 0:y=T -prf 1:z=T -prf 2:a=T -prf 3:b=T -prf 4:c=T -prf 5:x=T

3.2.2 Prefetch metadata

The source code of tests may include prefetch directives as metadata prefixed with “Prefetch=”. In par-
ticular, the generators of the diy suite (see Part II) produce such metadata. For instance in the case of the
6.SB test (generated source 6.SB+Prefetch.litmus), this metadata reads:

Prefetch=0:x=F,0:y=T,1:y=F,1:z=T,2:z=F,2:a=T,3:a=F,3:b=T,4:b=F,4:c=T,5:c=F,5:x=T

That is, each thread flushes the location it stores to and touches each location it reads from. Notice that
each thread starts with a memory location access (here a store) and ends with another (here a load). The
idea simply is to accelerate the exit access (with a cache touch) while delaying the entry access (with a cache
flush).

When prefetch metadata is available, it acts as the default of prefetch directives:

% litmus -mem indirect -preload custom -o R 6.SB+Prefetch.litmus

% cd R

% make

Then we run the test by:

% ./6.SB+Prefetch.exe

Test 6.SB Allowed

Histogram (63 states)

674 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;
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...

Witnesses

Positive: 674, Negative: 999326

...

Prefetch=0:x=F,0:y=T,1:y=F,1:z=T,2:a=T,2:z=F,3:a=F,3:b=T,4:b=F,4:c=T,5:c=F,5:x=T

...

One may notice that the prefetch directives from the source file medata found its way to the test executable.
As with any kind of metadata, one can change the prefetch metadata by editing the litmus source file,

or better by using the -hints command line option. The -hints command line option takes a filename as
argument. This file is a mapping that associates new metadata to test names. As an example, we reverse
diy scheme for cache management directives: accelerating entry accesses and delaying exit accesses:

% cat map.txt

6.SB Prefetch=0:x=W,0:y=F,1:y=W,1:z=F,2:a=F,2:z=W,3:a=W,3:b=F,4:b=W,4:c=F,5:c=W,5:x=F

% litmus -mem indirect -preload custom -hints map.txt -o R 6.SB.litmus

% cd R

% make

...

% ./6.SB.exe

Test 6.SB Allowed

Histogram (63 states)

24 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

Prefetch=0:x=W,0:y=F,1:y=W,1:z=F,2:a=F,2:z=W,3:a=W,3:b=F,4:b=W,4:c=F,5:c=W,5:x=F

...

As we see above, the final condition validates. It does so in spite of the apparently unfavourable cache
management directives.

We can experiment further without recompilation, by using the -pra and -prf command line options of
the test executable. Those are parsed left-to-right, so that we can (1) cancel any default cache management
directive with -pra I and (2) enable cache touch for the stores:

% ./6.SB.exe -pra I -prf 0:x=W -prf 1:y=W -prf 2:z=W -prf 3:a=W -prf 4:b=W -prf 5:c=W

Test 6.SB Allowed

...

Witnesses

Positive: 0, Negative: 1000000

...

Prefetch=0:x=W,1:y=W,2:z=W,3:a=W,4:b=W,5:c=W

As we see, the final condition does not validate.
By contrast, flushing or touching the locations that the threads load permit to repetitively achieve

validation:

chi% ./6.SB.exe -pra I -prf 0:y=F -prf 1:z=F -prf 2:a=F -prf 3:b=F -prf 4:c=F -prf 5:x=F

Test 6.SB Allowed

Histogram (63 states)

211 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

% ./6.SB.exe -pra I -prf 0:y=T -prf 1:z=T -prf 2:a=T -prf 3:b=T -prf 4:c=T -prf 5:x=T

Test 6.SB Allowed

Histogram (63 states)

10 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...
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As a conclusion, interpreting the impact of cache management directives is not easy. However, custom
preload mode (litmus command line option -preload custom) and test executable options -pra and -prf

allow experimentation on specific tests.

3.2.3 “Static” prefetch control

Custom prefetch mode comes handy when one wants to tailor cache management directives for a particular
test. In practice, we run batches of tests using source metadata for prefetch directives. In such a setting, the
code that interprets the prefetch directives is useless, as we do not use the -prf option of the test executables.
As this code get executed before each test thread code, it may impact test results. It is desirable to supress this
code from test executables, still performing cache management instructions. To that aim, litmus provides
some “static” preload modes, enabled with command line options -preload static, -preload static1

and -preload static2.
In the former mode -preload static and without any further user intervention, each test thread executes

the cache management instructions commanded by the Prefetch metadata:

% mkdir -p S

% litmus -mem indirect -preload static -o R 6.SB+Prefetch.litmus

% make -C S

% S/6.SB+Prefetch.exe

Test 6.SB Allowed

Histogram (63 states)

804 *>0:EAX=0; 1:EAX=0; 2:EAX=0; 3:EAX=0; 4:EAX=0; 5:EAX=0;

...

Observation 804 999196

...

As we can see above, the effect of the cache management instructions looks more favorable than in custom
preload mode.

Users still have a limited control on the execution of cache management instructions: produced executable
accept a new -prs <n> option, which take a positive or null integer as argument. Then, each test thread
executes the cache management instructions commanded by source metadata with probability 1/n, the
special value n = 0 disabling prefetch altogether. The default for the -prs options is “1” (always execute
the cache management instructions). Let us try:

% S/6.SB+Prefetch.exe -prs 0 | grep Observation

Observation 6.SB Never 0 1000000

% S/6.SB+Prefetch.exe -prs 1 | grep Observation

Observation 6.SB Sometimes 901 999099

% S/6.SB+Prefetch.exe -prs 2 | grep Observation

Observation 6.SB Sometimes 29 999971

% S/6.SB+Prefetch.exe -prs 3 | grep Observation

Observation 6.SB Sometimes 16 999984

In those experiments we show the “Observation” field of litmus output: this field gives the count of outcomes
that validate the final condition, followed by the count of outcomes that do not validate the final condition.
The above counts confirm that cache management instructions favor validation.

The remaining preload modes static1 and static2 are similar, except that they produce executable files
that do not accept the -prs option. Furthermore, in the former mode -preload static1 cache management
instructions are always executed, while in the latter mode -preload static2 cache management instructions
are executed with probability 1/2. Those modes thus act as pure static mode (litmus option -preload

static), with runtime options -prs 1 and -prs 2 respectively. Moreover, as the test scaffold includes no
code to interpret the -prs <n> switch, the test code is less perturbed. In practice and for the 6.SB example,
there is little difference:
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% mkdir -p S1 S2

% litmus -mem indirect -preload static1 -o S1 6.SB+Prefetch.litmus

% litmus -mem indirect -preload static2 -o S2 6.SB+Prefetch.litmus

% make -C S1 && make -C S2

...

% S1/6.SB+Prefetch.exe | grep Observation

Observation 6.SB Sometimes 1119 998881

% S2/6.SB+Prefetch.exe | grep Observation

Observation 6.SB Sometimes 16 999984

4 Usage of litmus

Arguments

litmus takes file names as command line arguments. Those files are either a single litmus test, when having
extension .litmus, or a list of file names, when prefixed by @. Of course, the file names in @files can
themselves be @files.

Options

There are many command line options. We describe the more useful ones:

General behaviour

-version Show version number and exit.

-libdir Show installation directory and exit.

-v Be verbose, can be repeated to increase verbosity.

-mach <name> Read configuration file name.cfg. See the next section for the syntax of configuration files.

-o <dest> Save C-source of test files into <dest> instead of running them. If argument <dest> is an
archive (extension .tar) or a compressed archive (extension .tgz), litmus builds an archive: this is the
“cross compilation feature” demonstrated in Sec. 1.2. Otherwise, <dest> is interpreted as the name of
an existing directory and tests are saved in it.

-driver (shell|C|XCode) Choose the driver that will run the tests. In the “shell” (and default) mode,
each test will be compiled into an executable. A dedicated shell script run.sh will launch the test
executables. In the “C” mode, one executable run.exe is produced, which will launch the tests (see
Sec. ?? for an example). Finally, the XCode mode is for inclusion of the tests into a dedicated iOS
App, which we do not distribute at the moment.

-crossrun <(user@)?host(:port)?|adb> When the shell driver is used (-driver shell above), instruct
the run.sh script to run individual tests on a remote machine. The remote host can be contacted by
the means of ssh or the Android Debug Bridge.

ssh user is a login name on the the remote host, <host> is the name of the remote host, and port is
a port-number which can be omitted when standard (22).

adb Tests will be run in the remote directory /data/tmp.

This option may be useful when the tested machine has little disk space or a crippled installation.
Default is disabled — i.e. run tests on the machine where the run.sh script runs.

-index <@name> Save the source names of compiled files in index file @name.
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Test conditions The following options set the default values of the options of the executable files produced:

-a <n> Run maximal number of tests concurrently for n available logical processors — set default value for
-a of Sec. 2.3. Default is 1 (run one test). When affinity control is enabled, the value 0 has the special
meaning of having executables to set the number of available logical processors according to how many
are actually present.

-limit <bool> Do not process tests with more than n threads, where n is the number of available cores
defined above. Default is true.

-r <n> Perform n runs — set default value for option -r of Sec. 2.3. The option accepts generalised syntax
for integers and default is 10.

-s <n> Size of a run — set default value for option -s of Sec. 2.3. The option accepts generalised syntax
for integers and default is 100000 (or 100k).

The following additional options control the various modes described in Sec. 2.1, and more. Those cannot
be changed without running litmus again:

-barrier (user|userfence|pthread|none|timebase) Set synchronisation mode, default user. Synchro-
nisation modes are described in Sec. 2.1

-launch (changing|fixed) Set launch mode, default changing.

-mem (indirect|direct) Set memory mode, default indirect. It is possible to instruct executables com-
piled in indirect mode to behave almost as if compiled in direct mode, see Sec. 2.3.

-stride <n> Specify a stride value of <n> — set default value for option -st of Sec. 2.3. See Sec. 2.1 for
details on the stride parameter. If ¡n¿ is negative or zero, restore the default, which is stride feature
disabled.

-st <n> Alias for -stride <n>.

-para (self|shell) Perform several tests concurrently, either by forking POSIX threads (as described in
Sec. 2.1), or by forking Unix processes. Only applies for cross compilation. Default is self.

-prealloc <bool> Enable or disable pre-allocation mode, default disabled. In pre-allocation mode, memory
is allocated before forking any thread.

-preload (no|random|custom|static|static1|static2) Specify preload mode (see Sec. 2.1), default is
random. Starting from version 5.0 we provide additional “custom” and “static” modes for a finer
control of prefetching and flushing of some memory locations by some threads. See Sec 3.2.

-safer (no|all|write) Specify safer mode, default is write. When instructed to do so, executable files
perform some consistency checks. Those are intended both for debugging and for dynamically checking
some assumptions on POSIX threads that we rely upon. More specifically the test harness checks for
the stabilisation of memory locations after a test round in the “all” and “write” mode, while the
initial values of memory locations are checked in “all” mode.

-speedcheck (no|some|all) Quick condition check mode, default is “no”. In mode “some”, test executable
will stop as soon as its condition is settled. In mode “all”, the run.sh script will additionally not run
the test if invoked once more later.

The following optiondra commands affinity control:

-affinity (none|incr<n>|random|custom) Enable (of disable with tag none) affinity control, specifying
default affinity mode of executables. Default is none, i.e. executables do not include affinity control
code. The various tags are interpreted as follows:
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1. incr<n>: integer <n> is the increment for allocating logical processors to threads — see Sec. 2.2.
Notice that with -affinity incr0 the produced code features affinity control, which executable
files do not exercise by default.

2. random: executables perform random allocation of test threads to logical processors.

3. custom: executables perform custom allocation of test threads to logical processors.

Notice that the default for executables can be overridden using options -i,+ra and +ca of Sec. 2.3.

-i <n> Alias for -affinity incr<n>.

Notice that affinity control is not implemented for MacOs.
The following options are significant when affinity control is enabled. Otherwise they are silent no-ops.

-p <ns> Specify the sequence of logical processors. The notation <ns> stands for a comma separated list of
integers. Set default value for option -p of Sec. 2.3. Default for this -p option will let executable files
compute the logical processor sequence themselves.

-force afffinity <bool> Code that sets affinity will spin until all specified cores (as given with option
-avail <n>) processors are up. This option is necessary on devices that let core sleep when the
computing load is low. Default is false.

Custom affinity control (see Sec. 2.2.4) is enabled, first by enabling affinity control (e.g. with -affinity

...), and then by specifying a logical processor topology with options -smt and -smt mode.

-smt <n> Specify that logical processors are close by groups of n, default is 1.

-smt mode (none|seq|end) Specify how “close” logical processors are numbered, default is none. In
mode “end”, logical processors of the same core are numbered as c, c+ Ac etc. where c is a physical
core number and Ac is the number of physical cores available. In mode “seq”, logical processors of the
same core are numbered in sequence.

Notice that custom affinity works only for those tests that include the proper meta-information. Otherwise,
custom affinity silently degrades to random affinity.

Finally, a few miscellaneous options are documented:

-l <n> Insert the assembly code of each thread in test in a loop of size <n>. Accepts generalised integer
syntax, disabled by default. Sets default value for option -l of Sec. 2.3.

This feature may prove useful for measuring running times that are not too much perturbed by the
test harness, in combination with options -s 1 -r 1.

-vb <bool> Disable/enable the printing of synchronisation timings, default is false.

This feature may prove useful for analysing the synchronisation behaviour of a specific test, see Sec. 3.1.

-ccopts <flags> Set gcc compilation flags (defaults: X86="-fomit-frame-pointer -O2", PPC/ARM="-O2").

-gcc <name> Change the name of C compiler, default gcc.

-linkopt <flags> Set gcc linking flags. (default: void).

-gas <bool> Emit Gnu as extensions (default Linux/Mac=true, AIX=false)
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Target architecture description Litmus compilation chain may slightly vary depending on the following
parameters:

-os (linux|mac|aix) Set target operating system. This parameter mostly impacts some of gcc options.
Default linux.

-ws (w32|w64) Set word size. This option first selects gcc 32 or 64 bits mode, by providing it with the
appropriate option (-m32 or -m64 on linux, -maix32 or -maix64 on AIX). It also slightly impacts code
generation in the corner case where memory locations hold other memory locations. Default is a bit
contrived: it acts as w32 as regards code generation, while it provides no 32/64 bits mode selection
option to gcc.

Change input Some items in the source of tests can be changed at the very last moment. The new
items are defined in mapping files whose names are arguments to the appropriate command line options.
Mapping files simply are lists of pairs, with one line starting with a test name, and the rest of line defining
the changed item. The changed item may also contains several lines: in that case it should be included in
double quotes “".”.

-names <file> Run litmus only on tests whose names are listed in <file>.

-rename <file> Change test names.

-kinds <file> Change test kinds. This amonts to changing the quantifier of final conditions, with kind
Allow being exists, kind Forbid being ~exists and kind Require being forall.

-conds <file> Change the final condition of tests.

-hints <file> Change meta-data, or hints. Hints command avanced features such as custom affinity
(option -affinity custom and Sec. 2.2.4) and prefech control (option -preload custom and Sec. 3.2).

Observe that the rename mapping is applied first. As a result kind or condition change must refer to new
names. For instance, we can highlight that a X86 machine is not sequentially consistent by first renaming SB

into SB+SC, and then changing the final condition. The new condition expresses that the first instruction
(a store) of one of the threads must come first:

rename.txt cond.txt

SB SB+SC SB+SC "forall (0:EAX=1 \/ 1:EAX=1)"

Then, we run litmus:

% litmus -mach x86 -rename rename.txt -conds cond.txt SB.litmus

%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for SB.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%

X86 SB+SC

"Fre PodWR Fre PodWR"

{x=0; y=0;}

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EAX,[x] ;
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forall (0:EAX=1 \/ 1:EAX=1)

Generated assembler

#START _litmus_P1

movl $1,(%r8,%rdx)

movl (%rdx),%eax

#START _litmus_P0

movl $1,(%rdx)

movl (%r8,%rdx),%eax

Test SB+SC Required

Histogram (4 states)

39954 *>0:EAX=0; 1:EAX=0;

3979407:>0:EAX=1; 1:EAX=0;

3980444:>0:EAX=0; 1:EAX=1;

195 :>0:EAX=1; 1:EAX=1;

No

Witnesses

Positive: 7960046, Negative: 39954

Condition forall (0:EAX=1 \/ 1:EAX=1) is NOT validated

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

Observation SB+SC Sometimes 7960046 39954

Time SB+SC 0.48

One sees that the test name and final condition have changed.

Configuration files

The syntax of configuration files is minimal: lines “key = arg” are interpreted as setting the value of param-
eter key to arg. Each parameter has a corresponding option, usually -key, except for single-letter options:

option key arg

-a avail integer
-s size of test integer
-r number of run integer
-p procs list of integers
-l loop integer

Notice that litmus in fact accepts long versions of options (e.g. -avail for -a).
As command line option are processed left-to-right, settings from a configuration file (option -mach) can

be overridden by a later command line option. Some configuration files for the machines we have tested are
present in the distribution. As an example here is the configuration file hpcx.cfg. Lines introduced by #

are comments and are thus ignored.
Configuration files are searched first in the current directory; then in any directory specified by setting

the shell environment variable LITMUSDIR; and then in litmus installation directory, which is defined while
compiling litmus.
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Part II

Generating tests
The authors of diy are Jade Alglave and Luc Maranget (INRIA Paris–Rocquencourt).

5 Preamble

We wrote diy as part of our empirical approach to studying relaxed memory models: developing in tan-
dem testing tools and models of multiprocessor behaviour. In this tutorial, we attempt an independent
tool presentation. Readers interested by the companion formalism are invited to refer to our CAV 2010
publication [1].

The distribution includes additional test generators: diyone for generating one test and diycross for
generating simple variations on one test.

5.1 Relaxation of Sequential Consistency

Relaxation is one of the key concepts behind simple analysis of weak memory models. We define a candi-
date relaxation by reference to the most natural model of parallel execution in shared memory: Sequential
Consistency (SC), as defined by L. Lamport [3]. A parallel program running on a sequentially consistent
machine behaves as an interleaving of its sequential threads.

Consider once more the example SB.litmus:

X86 SB

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ; #(a)Wy1 | (c)Wx1

MOV EAX,[x] | MOV EAX,[y] ; #(b)Rx0 | (d)Ry0

exists (0:EAX=0 /\ 1:EAX=0)

To focus on interaction through shared memory, let us consider memory accesses, or memory events. A
memory event will hold a direction (write, written W, or read, written R), a memory location (written x, y)
a value and a unique label. In any run of the simple example above, four memory events occur: two writes
(c)Wx1 and (a)Wy1 and two reads (b)Rxv1 with a certain value v1 and (d) Ryv2 with a certain value v2.

If the program’s behaviour is modelled by the interleaving of its events, the first event must be a write
of value 1 to location x or y and at least one of the loads must see a 1. Thus, a SC machine would exhibit
only three possible outcomes for this test:

Allowed: 0:EAX = 0 ∧ 1:EAX = 1
Allowed: 0:EAX = 1 ∧ 1:EAX = 0
Allowed: 0:EAX = 1 ∧ 1:EAX = 1

However, running (see Sec. 1.1) this test on a x86 machine yields an additional result:

Allowed: 0:EAX = 0 ∧ 1:EAX = 0

And indeed, x86 allows each write-read pair on both processors to be reordered [2]: thus the write-read
pair in program order is relaxed on each of these architectures. We cannot use SC as an accurate memory
model for modern architectures. Instead we analyse memory models as relaxing the ordering constraints of
the SC memory model.
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5.2 Introduction to candidate relaxations

Consider again our classical example, from a SC perspective. We briefly argued that the outcome “0:EAX
= 0 ∧ 1:EAX = 0” is forbidden by SC. We now present a more complete reasoning:

• From the condition on outcome, we get the values in read events: (b)Rx0 and (d)Ry0.

• Because of these values, (b)Rx0 must precede the write (c)Wx1 in the final interleaving of SC. Similarly,

(d)Ry0 must precede the write (a)Wy1. This we note (b)
fr
→ (c) and (d)

fr
→ (a).

• Because of sequential execution order on one single processor (a.k.a. program order), (a)Wy1 must
precede (b)Rx0 (first processor); while (c)Wx1 must precede (d) Ry0 (second processor). This we note

(a)
po
→ (b) and (c)

po
→ (d).

• We synthesise the four constraints above as the following graph:

(a) Wy1

(b) Rx0

(c) Wx1

(d) Ry0

po rf

fr

porf

fr

rf

rf

Constraint arrows or global arrows are shown in brown colour. As the graph contains a cycle of brown
arrows, the events cannot be ordered. Hence the execution presented is not allowed by SC.

The key idea of diy resides in producing programs from similar cycles. To that aim, the edges in cycles
must convey additional information:

• For
po
→ edges, we consider whether the locations of the events on both sides of the edge are the same

or not (’s’ or ’d’); and the direction of these events (W or R). For instance the two
po
→ edges in the

example are PodWR. (program order edge between a write and a read whose locations are different).

• For
fr
→ edges, we consider whether the processor of the events on both sides of the edge are the same

or not (’i’ for internal, or ’e’ for external). For instance the two
fr
→ edges in the example are Fre.

So far so good, but our x86 machine produced the outcome 0:EAX=0 ∧ 1:EAX=0. The Intel Memory
Ordering White Paper [2] specifies: “Loads may be reordered with older stores to different locations”, which
we rephrase as: PodWR is relaxed. Considering Fre to be safe, we have the graph:
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(a)Wy1

(b)Rx0

(c)Wx1

(d)Ry0

PodWR Rf

Fre

PodWRRf

Fre

Rf

Rf

And the brown sub-graph becomes acyclic.
We shall see later why we choose to relax PodWR and not Fre. At the moment, we observe that we can

assume PodWR to be relaxed and Fre not to be (i.e. to be safe) and test our assumptions, by producing
and running more litmus tests. The diy suite precisely provides tools for this approach.

As a first example, SB.litmus can be created as follows:

% diyone -arch X86 -name SB Fre PodWR Fre PodWR

As a second example, we can produce several similar tests as follows:

% diy -arch X86 -safe Fre -relax PodWR -name SB

Generator produced 2 tests

Relaxations tested: {PodWR}

diy produces two litmus tests, SB000.litmus and SB001.litmus, plus one index file @all. One of the litmus
tests generated is the same as above, while the new test is:

% cat SB001.litmus

X86 SB001

"Fre PodWR Fre PodWR Fre PodWR"

Cycle=Fre PodWR Fre PodWR Fre PodWR

Relax=PodWR

Safe=Fre

{ }

P0 | P1 | P2 ;

MOV [z],$1 | MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[x] | MOV EAX,[y] | MOV EAX,[z] ;

exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0)

% cat @all

# diy -arch X86 -safe Fre -relax PodWR -name SB

# Revision: 3333

SB000.litmus

SB001.litmus

diy first generates cycles from the candidate relaxations given as arguments, up to a limited size, and
then generates litmus tests from these cycles.

5.3 More candidate relaxations

We assume the memory to be coherent. Coherence implies that, in a given execution, the writes to a given
location are performed by following a sequence, or coherence order, and that all processors see the same
sequence.
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In diy, the coherence orders are specified indirectly. For instance, the candidate relaxation Wse (resp.
Wsi) specifies two writes, performed by different processors (resp. the same processor), to the same location ℓ,
the first write preceding the second in the coherence order of ℓ. The condition of the produced test then
selects the specified coherence orders. Consider for instance:

% diyone -arch X86 -name x86-2+2W Wse PodWW Wse PodWW

The cycle that reveals a violation of the SC memory model is:

(a) Wy2

(b) Wx1

(c) Wx2

(d) Wy1

PodWWrf

Wse

PodWWrf

Wse

So the coherence order is 0 (initial store, not depicted), 1, 2 for both locations x and y. While the produced
test is:

X86 x86-2+2W

"Wse PodWW Wse PodWW"

Prefetch=0:x=F,0:y=W,1:y=F,1:x=W

Com=Ws Ws

Orig=Wse PodWW Wse PodWW

{

}

P0 | P1 ;

MOV [x],$2 | MOV [y],$2 ;

MOV [y],$1 | MOV [x],$1 ;

exists

(x=2 /\ y=2)

By the coherence hypothesis, checking the final value of locations suffices to characterise those two coherence
orders, as expressed by the final condition of x86-2+2W:

exists (x=2 /\ y=2)

See Sec. 9 for alternative means to identify coherence orders.
Candidate relaxations Rfe and Rfi relate writes to reads that load their value. We are now equipped to

generate the famous iriw test (independent reads of independent writes):

% diyone -arch X86 Rfe PodRR Fre Rfe PodRR Fre -name iriw

We generate its internal variation (i.e. where all Rfe are replaced by Rfi) as easily:

% diyone -arch X86 Rfi PodRR Fre Rfi PodRR Fre -name iriw-internal

We get the cycles of Fig. 1, and the litmus tests of Fig. 2.
Candidate relaxations given as arguments really are a “concise specification”. As an example, we get

iriw for Power, simply by changing -arch X86 into -arch PPC.
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Figure 1: Cycles for iriw and iriw-internal

(a) Ry1

(b) Rx0

(c) Wx1

(d) Rx1

(e) Ry0

(f) Wy1

PodRR

Fre

Rferf

PodRR

Fre

Rfe

rf

rf

rf

(a) Wx1

(b) Rx1

(c) Ry0

(d) Wy1

(e) Ry1

(f) Rx0

Rfi rf

PodRR

Fre

Rfirf

PodRR

Fre

rf

rf

Figure 2: Litmus tests iriw and iriw-internal

X86 iriw

"Rfe PodRR Fre Rfe PodRR Fre"

{ }

P0 | P1 | P2 | P3 ;

MOV EAX,[y] | MOV [x],$1 | MOV EAX,[x] | MOV [y],$1 ;

MOV EBX,[x] | | MOV EBX,[y] | ;

exists (0:EAX=1 /\ 0:EBX=0 /\ 2:EAX=1 /\ 2:EBX=0)

X86 iriw-internal

"Rfi PodRR Fre Rfi PodRR Fre"

{ }

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

MOV EBX,[y] | MOV EBX,[x] ;

exists

(0:EAX=1 /\ 0:EBX=0 /\

1:EAX=1 /\ 1:EBX=0)
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% diyone -arch PPC Rfe PodRR Fre Rfe PodRR Fre

PPC a

"Rfe PodRR Fre Rfe PodRR Fre"

{

0:r2=y; 0:r4=x;

1:r2=x;

2:r2=x; 2:r4=y;

3:r2=y;

}

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwz r3,0(r4) | stw r1,0(r2) | lwz r3,0(r4) | stw r1,0(r2) ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0)

Also notice that without the -name option, diyone writes its result to standard output.

5.4 Summary of simple candidate relaxations

We summarise the candidate relaxations available on all architectures.

5.4.1 Communication candidate relaxations

We call communication candidate relaxations the relations between two events communicating through
memory, though they could belong to the same processor. Thus, these events operate on the same memory
location.

diy syntax Source Target Processor Additional property
Rfi W R Same Target reads its value from source
Rfe W R Different Target reads its value from source
Wsi W W Same Source precedes target in coherence order
Wse W W Different Source precedes target in coherence order
Fri R W Same Source reads a value from a write that pre-

cedes target in coherence order
Fre R W Different Source reads a value from a write that pre-

cedes target in coherence order

5.4.2 Program order candidate relaxations

We call program order candidate relaxations each relation between two events in the program order. These
events are on the same processor, since they are in program order. As regards code output, diy interprets
a program order candidate relaxation by generating two memory instructions (load or store) following one
another.

Program order candidate relaxations have the following syntax:

Po(s|d)(R|W)(R|W)

where:

• s (resp. d) indicates that the two events are to the same (resp. different) location(s);

• R (resp. W) indicates an event to be a read (resp. a write);

In practice, we have:
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diy syntax Source Target Location
PosRR R R Same
PodRR R R Diff
PosRW R W Same
PodRW R W Diff
PosWW W W Same
PodWW W W Diff
PosWR W R Same
PodWR W R Diff

It is to be noticed that PosWR, PosWW and PosRW are similar to Rfi, Wsi and Fri, respectively. More
precisely, diy is unable to consider a PosWR (or PosWW, or PosRW) candidate relaxation as not being also
a Rfi (or Wsi, or Fri) candidate relaxation. However, litmus tests conditions may be more informative in the
case of Rfi and Fri.

5.4.3 Fence candidate relaxations

Relaxed architectures provide specific instructions, namely barriers or fences, to enforce order of memory
accesses. In diy the presence of a fence instruction is specified with fence candidate relaxations, similar to
program order candidate relaxations, except that a fence instruction is inserted. Hence we have FencedsRR,
FenceddRR. etc. The inserted fence is the strongest fence provided by the architecture — that is, mfence
for x86 and sync for Power.

Fences can also be specified by using specific names. More precisely, we have MFence for x86; while on
Power we have Sync, LwSync, Eieio and Isync. Hence, to yield two reads to different locations and separated
by the lightweight Power barrier lwsync, we specify LwSyncdRR. On ARM we have DMB, DSB and ISB.

6 Testing candidate relaxations with diy

The tool diy can probably be used in various, creative, ways; but the tool first stems from our technique for
testing relaxed memory models. The -safe and -relax options are crucial here. We describe our technique
by the means of an example: X86-TSO.

Notice that this style of model exploration is mechanised by dont (diy) — see Part V.

6.1 Principle

Before engaging in testing it is important to categorise candidate relaxations as safe or relaxed.
This can done by interpretation of vendor’s documentation. For instance, the iriw test of Sec. 5.3 is the

example 7.7 of [2] “Stores Are Seen in a Consistent Order by Other Processors”, with a Forbid specification.
Hence we deduce that Fre, Rfe and PodRR are safe. Then, from test iriw-internal of Sec. 5.3, which is Intel’s
test 7.5 “Intra-Processor Forwarding Is Allowed” with an allow specification, we deduce that Rfi is relaxed.
Namely, the cycle of iriw-internal is “Fre Rfi PodRR Fre Rfi PodRR”. Therefore, the only possibility is for
Rfi to be relaxed.

Overall, we deduce:

• Candidate relaxations PosWR (Rfi) and PodWR are relaxed

• The remaining candidate relaxations PosRR, PodRR, PosWW (Wsi), PodWW, PosRW (Fri), Fre and
Wse are safe. Fence relaxations FencedsWR and FenceddWR are also safe and worth testing.

Of course these remain assumptions to be tested. To do so, we perform one series of tests per relaxed
candidate relaxation, and one series of tests for confirming safe candidate relaxations as much as possible.
Let S be all safe candidate relaxations.
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• Let r be a relaxed candidate relaxation. We produce tests for confirming r being relaxed by diy

-relax r -safe S. We run these tests with litmus. If one of the tests yields Ok, then r is confirmed to
be relaxed, provided the experiments on S below do not fail.

• For confirming the safe set, we produce tests by diy -safe S. We run these tests as much as possible
and expect never to see Ok.

Namely, diy builds cycles as follows:

• diy -relax r -safe S build cycles with at least one r taking other candidate relaxations from S.

• diy -safe S build cycles from the candidate relaxations in S.

For the purpose of confirming relaxed candidate relaxations, S can be replaced by a subset.

6.2 Testing x86

Repeating command line options is painful and error prone. Besides, configuration parameters may get lost.
Thus, we regroup those in configuration files that simply list the options to be passed to diy, one option per
line. For instance here is the configuration file for testing the safe relaxations of x86, x86-safe.conf.

#safe x86 conf file

-arch X86

#Generate tests on four processors or less

-nprocs 4

#From cycles of size at most six

-size 6

#With names safe000, safe0001,...

-name safe

#List of safe relaxations

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FencedsWR FenceddWR

Observe that the syntax of candidate relaxations allows one shortcut: the wildcard * stands for W and R.
Thus PodR* gets expanded to the two candidate relaxations PodRR and PodRW.

We get safe tests by issuing the following command, preferably in a specific directory, say safe.

% diy -conf x86-safe.conf

Generator produced 38 tests

Relaxations tested: {}

Here are the configuration files for confirming that Rfi and PodWR are relaxed, x86-rfi.conf and x86-podwr.conf.

#rfi x86 conf file

-arch X86

-nprocs 4

-size 6

-name rfi

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FencedsWR FenceddWR

-relax Rfi

#podrw x86 conf file

-arch X86

-nprocs 4

-size 6

-name podwr

-safe Fre

-relax PodWR

Notice that we used the complete safe list in x86-rfi.conf and a reduced list in x86-podwr.conf. Tests
are to be generated in specific directories.
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% cd rfi

% diy -conf x86-rfi.conf

Generator produced 11 tests

Relaxations tested: {Rfi}

% cd ../podwr

% diy -conf x86-podwr.conf

Generator produced 2 tests

Relaxations tested: {PodWR}

% cd ..

Now, let us run all tests at once, with the parameters of machine saumur (4 physical cores with hyper-
threading):

% litmus -mach saumur rfi/@all > rfi/saumur.rfi.00

% litmus -mach saumur podwr/@all > podwr/saumur.podwr.00

% litmus -mach saumur safe/@all > safe/saumur.safe.00

If your machine has 2 cores only, try litmus -a 2 -limit true. . .
We now look for the tests that have validated their condition in the result files of litmus. A simple tool,

readRelax, does the job:

% readRelax rfi/saumur.rfi.00 podwr/saumur.podwr.00 safe/saumur.safe.00

.

.

.

** Relaxation summary **

{Rfi} With {Rfe, Fre, Wse, PodRW, PodRR} {Rfe, Fre, PodRR}\

{Fre, Wse, PodWW, PodRR} {Fre, PosWW, PodRR, MFencedWR}\

{Fre, PodWW, PodRR, MFencedWR} {Fre, PodRR} {Fre, PodRR, MFencedWR}

{PodWR} With {Fre}

The tool readRelax first lists the result of all tests (which is omitted above), and then dumps a summary of
the relaxations it found. The sets of the candidate relaxations that need to be safe for the tests to indeed
reveal a relaxed candidate relaxation are also given. Here, Rfi and PodWR are confirmed to be relaxed, while
no candidate relaxation in the safe set is found to be relaxed. Had it been the case, a line {} With {...}

would have occurred in the relaxation summary. The safe tests need to be run a lot of times, to increase our
confidence in the safe set.

7 Additional relaxations

We introduce some additional candidate relaxations that are specific to the Power architecture. We shall not
detail here our experiments on Power machines. See our experience report http://diy.inria.fr/phat/ for
more details.

7.1 Intra-processor dependencies

In a very relaxed architecture such as Power, intra-processor dependencies becomes significant. Roughly,
intra-processor dependencies fall into two categories:

Data dependencies occur when a memory access instruction reads a register whose contents depends upon
a previous (in program order) load. In diy we specify such a dependency as:

Dp(s|d)(R|W)
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where, as usual, s (resp. d) indicates that the source and target events are to the same (resp. different)
location(s); and R (resp. W) indicates that the target event is a read (resp. a write). As a matter of
fact, we do not need to specify the direction of the source event, since it always is a read.

Finally, one may control the nature of the dependency: address dependency (DpAddr(s|d)(R|W) or
data dependency (DpData(s|d)W).

Control dependencies occur when the execution of a memory access is conditioned by the contents of a
previous load. Their syntax is similar to the one of Dp relaxations, with a Ctrl tag:

Ctrl(s|d)(R|W)

This default syntax expands to control dependencies as guaranteed by the Power documentation. For
read to write, conditioning execution is enough (expanded syntax, DpCtrl(s|d)W). But for read to
read, an extra instruction, isync, is needed (expanded syntax DpCtrlIsync(s|d)R, see below). The
syntax DpCtrl(s|d)R also exists, it expresses the conditional execution of a load instruction and does
not create ordering.

ARM has similar candidate relaxations, Isync being replaced by ISB.

In the produced code, diy expresses a data dependency by a false dependency (or dummy dependency) that
operates on the address of the target memory access. For instance:

% diyone DpdW Rfe DpdW Rfe

PPC a

"DpAddrdW Rfe DpAddrdW Rfe"

{

0:r2=y; 0:r5=x;

1:r2=x; 1:r5=y;

}

P0 | P1 ;

lwz r1,0(r2) | lwz r1,0(r2) ;

xor r3,r1,r1 | xor r3,r1,r1 ;

li r4,1 | li r4,1 ;

stwx r4,r3,r5 | stwx r4,r3,r5 ;

exists (0:r1=1 /\ 1:r1=1)

On P0, the effective address of the indexed store stwx r4,r3,r5 depends on the contents of the index
register r3, which itself depends on the contents of r1. The dependency is a “false” one, since the contents
of r3 always is zero, regardless of the contents of r1. One may observe that DpdW is changed into DpAddrdW
in the comment field of the test. As a matter of fact, DpdW is a macro for the address dependency DpAddrW.
We could have specified data dependency instead:

% diyone DpDatadW Rfe DpAddrdW Rfe

PPC a

"DpDatadW Rfe DpAddrdW Rfe"

{

0:r2=y; 0:r4=x;

1:r2=x; 1:r5=y;

}

P0 | P1 ;

lwz r1,0(r2) | lwz r1,0(r2) ;

xor r3,r1,r1 | xor r3,r1,r1 ;

addi r3,r3,1 | li r4,1 ;

stw r3,0(r4) | stwx r4,r3,r5 ;
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exists

(0:r1=1 /\ 1:r1=1)

On P0, the value stored by the last (store) instruction stw r3,0(r4) is now computed from the value read
by the first (load) instruction lwz r1,0(r2). Again, this is a “false” dependency.

A control dependency is implemented by the means of an useless compare and branch sequence, plus the
isync instruction when the target event is a load. For instance

% diyone CtrldR Fre SyncdWW Rfe

PPC a

"DpCtrlIsyncdR Fre SyncdWW Rfe"

{

0:r2=y; 0:r4=x;

1:r2=x; 1:r4=y;

}

P0 | P1 ;

lwz r1,0(r2) | li r1,1 ;

cmpw r1,r1 | stw r1,0(r2) ;

beq LC00 | sync ;

LC00: | li r3,1 ;

isync | stw r3,0(r4) ;

lwz r3,0(r4) | ;

exists

(0:r1=1 /\ 0:r3=0)

Also notice that CtrldR is interpreted as DpCtrlIsyncR in the comment field of the test.
Of course, in all cases, we assume that “false” dependencies are not “optimised out” by the assembler or

the hardware.

7.2 Composite relaxations and cumulativity

Users may specify a small sequence of single candidate relaxations as behaving as a single candidate relaxation
to diy. The syntax is:

[r1, r2, . . . ]

The main usage of the feature is to specify cumulativity candidate relaxations, that is, the sequence of Rfe
and of a fence candidate relaxation (A-cumulativity), the sequence of a fence candidate relaxation and of Rfe
(B-cumulativity), or both (AB-cumulativity).

Cumulativity candidate relaxations are best expressed by the following syntactical shortcuts: let r be
a fence candidate relaxation, then ACr stands for [Rfe,r], BCr stands for [r,Rfe], while ABCr stands
for [Rfe,r,Rfe],

Hence, a simple way to generate iriw-like (see Sec. 5.3) litmus tests with lwsync is as follows:

% diy -name iriw-lwsync -nprocs 8 -size 8 -relax ACLwSyncdRR -safe Fre

Generator produced 3 tests

Relaxations tested: {ACLwSyncdRR}

where we have for instance:

% cat iriw-lwsync001.litmus

PPC iriw-lwsync001

"Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR"

Cycle=Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR

Relax=ACLwSyncdRR
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Safe=Fre

{

0:r2=z; 0:r4=x; 1:r2=x;

2:r2=x; 2:r4=y; 3:r2=y;

4:r2=y; 4:r4=z; 5:r2=z;

}

P0 | P1 | P2 | P3 | P4 | P5 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwsync | stw r1,0(r2) | lwsync | stw r1,0(r2) | lwsync | stw r1,0(r2) ;

lwz r3,0(r4) | | lwz r3,0(r4) | | lwz r3,0(r4) | ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0 /\ 4:r1=1 /\ 4:r3=0)

7.3 Detour candidate relaxations

Detours combine a Pos candidate relaxation and a sequence of two external communication candidate relax-
ations. More precisely detours are some constrained Pos candidate relaxations: the source and target events
must be related by a sequence of two communication candidate relaxations, whose target and source are a
common event whose processor is new.

diy syntax Source Target Detour
DetourR R R Fre; Rfe
DetourW W R Wse; Rfe
DetourRW R W Fre;Wse
DetourWW W W Wse;Wse

DetourRR and DetourWR are accepted as synonyms for DetourR and DetourW respectively.
Graphically, we have:

DetourR

a: Rx=0

b: Rx=1

c: Wx=1

po

fr

rf

DetourW

a: Wx=1

b: Rx=2

c: Wx=2

po

co

rf

DetourRW

a: Rx=0

b: Wx=2

c: Wx=1

po

fr

co

DetourWW

a: Wx=1

b: Wx=3

c: Wx=2

po

co

co

Finally notice that “internal” detours need no special treatement as they can be expressed by the sequences
“Fri; Rfi”, “Wsi;Rfi”, etc.
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8 Test variations with diycross

The tool diycross has an interface similar to diyone, except it accepts list of candidate relaxations where
diyone accepts single candidate relaxations. The new tool produces the test resulting by “cross producing”
the lists. For instance, one can generate all variations on the IRIW test (see Sec. 5.3) that involve data
dependencies and the lightweight barrier lwsync as follows:

% diycross -arch PPC -name IRIW Rfe DpdR,LwSyncdRR Fre Rfe DpdR,LwSyncdRR Fre

Generator produced 3 tests

% ls

@all IRIW+addrs.litmus IRIW+lwsync+addr.litmus IRIW+lwsyncs.litmus

diycross outputs the index file @all that lists the test source files, and three tests, with names we believe to
be self-explanatory:

% cat IRIW+lwsync+addr.litmus

PPC IRIW+lwsync+addr

"Rfe LwSyncdRR Fre Rfe DpAddrdR Fre"

Cycle=Rfe LwSyncdRR Fre Rfe DpAddrdR Fre

{

0:r2=y;

1:r2=y; 1:r4=x;

2:r2=x;

3:r2=x; 3:r5=y;

}

P0 | P1 | P2 | P3 ;

li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) ;

stw r1,0(r2) | lwsync | stw r1,0(r2) | xor r3,r1,r1 ;

| lwz r3,0(r4) | | lwzx r4,r3,r5 ;

exists (1:r1=1 /\ 1:r3=0 /\ 3:r1=1 /\ 3:r4=0)

Users may use the special keywords allRR, allRW, allWR and allWW to specify the set of all existing
program order candidate relaxations between the specified “R” or “W”. For instance, we get the complete
variations on IRIW by:

% diycross -arch PPC -name IRIW Rfe allRR Fre Rfe allRR Fre

Generator produced 28 tests

% ls

@all

IRIW.litmus

IRIW+addr+po.litmus

IRIW+lwsync+addr.litmus

...

IRIW+isyncs.litmus

9 Identifying coherence orders with observers

We first produce the “four writes” test 2+2W for Power:

% diyone -name 2+2W -arch PPC PodWW Wse PodWW Wse

% cat 2+2W.litmus

PPC 2+2W

"PodWW Wse PodWW Wse"
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{ 0:r2=x; 0:r4=y; 1:r2=y; 1:r4=x; }

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

exists (x=2 /\ y=2)

Test 2+2W is the Power version of the x86 test x86-2+2W of Sec. 5.3. In that section, we argued that the
final condition exists (x=2 /\ y=2) suffices to identify the coherence orders 0, 1, 2 for locations x and y.
As a consequence, a positive final condition reveals the occurrence of the specified cycle: Wse PodWW Wse
PodWW.

9.1 Simple observers

Observers provide an alternative, perhaps more intuitive, means to identify coherence orders: an observer
simply is an additional thread that performs several loads from the same location in sequence. Here, loading
value 1 and then value 2 from location x identifies the coherence order 0, 1, 2. The command line switch
-obs force commands the production of observers (test 2+2WObs):

% diyone -name 2+2WObs -obs force -obstype straight -arch PPC PodWW Wse PodWW Wse

% cat 2+2WObs.litmus

PPC 2+2WObs

"PodWW Wse PodWW Wse"

{ 0:r2=x; 1:r2=y; 2:r2=x; 2:r4=y; 3:r2=y; 3:r4=x; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | lwz r1,0(r2) | li r1,2 | li r1,2 ;

lwz r3,0(r2) | lwz r3,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

| | li r3,1 | li r3,1 ;

| | stw r3,0(r4) | stw r3,0(r4) ;

exists (0:r1=1 /\ 0:r3=2 /\ 1:r1=1 /\ 1:r3=2)

Thread P0 observes location x, while thread P1 observes location y. With respect to 2+2W, final condition
has changed, the direct observation of the final contents of locations x and y being replaced by two successive
observations of the contents of x and y.

It should first be noticed that the reasoning above assumes that having the same thread to read 1 from
say x and then 2 implies that 1 takes place before 2 in the coherence order of x. This may not be the case
in general — although it holds for Power. Moreover, running 2+2W and 2+2WObs yields contrasted results.
While a positive conclusion is immediate for 2+2W, we were not able to reach a similar conclusion for 2+2WObs.
As a matter of fact, 2+2WObs yielding Ok stems from the still-to-be-observed coincidence of several events:
both observers threads must run at the right pace to observe the change from 1 to 2, while the cycle must
indeed occur.

9.2 More observers

9.2.1 Fences and loops in observers

A simple observer consisting of loads performed in sequence is a straight observer. We define two additional
sorts of observers: fenced observers, where loads are separated by the strongest fence available, and loop

observers, which poll on location contents change. Those are selected by the homonymous tags given as
arguments to the command line switch -obstype. For instance, we get the test 2+2WObsFenced by:

% diyone -name 2+2WObsFenced -obs force -obstype fenced -arch PPC PodWW Wse PodWW Wse

% cat 2+2WObsFenced.litmus
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PPC 2+2WObsFenced

"PodWW Wse PodWW Wse"

{ 0:r2=x; 1:r2=y; 2:r2=x; 2:r4=y; 3:r2=y; 3:r4=x; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | lwz r1,0(r2) | li r1,2 | li r1,2 ;

sync | sync | stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) | li r3,1 | li r3,1 ;

| | stw r3,0(r4) | stw r3,0(r4) ;

exists (0:r1=1 /\ 0:r3=2 /\ 1:r1=1 /\ 1:r3=2)

Invoking diyone as “diyone -obs force -obstype loop ...” yields the additional test 2+2WObsLoop. The
html version of this document provides details.

9.2.2 Local observers

With local observers, coherence order is observed by the test threads. This implies changing the tests, and
some care must be exercised when interpreting results.

The idea is as follows: when two threads are connected by a Wse candidate relaxation, meaning that the
first thread ends by writing v to some location ℓ and that the second threads starts by writing v + 1 to the
same location ℓ, we add an observing read of location ℓ at the end of the first thread. Then, reading v + 1
means that the write by the first thread precedes the write by the second thread in ℓ coherence order. More
concretely, we instruct diy generators to emit such local observers with option -obs local:

% diyone -name 2+2WLocal -obs local -obstype straight -arch PPC PodWW Wse PodWW Wse

% cat 2+2WLocal.litmus

PPC 2+2WLocal

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

lwz r5,0(r4) | lwz r5,0(r4) ;

exists

(0:r5=2 /\ 1:r5=2)

With respect to 2+2W, final condition has changed, the direct observation of the final contents of locations y
and x being replaced local observation of y by thread 0 and local observation of x by thread 1.

Based for instance on the test execution witness, whose only SC-violation cycle is the same as as for
2+2W,
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a: W[x]=2

b: W[y]=1

f: R[x]=2

c: R[y]=2

d: W[y]=2

e: W[x]=1

po:0

rf

rf

po:0

ws

rf po:1rf

ws

po:1

one may argue that tests 2+2W and 2+2WLocal are equivalent, in the sense that both are allowed or both
are forbidden by a model or machine.

Local observers can also be fenced or looping. For instance, one produces 2+2WLocalFenced, the fenced
local observer version of 2+2W as follows:

% diyone -name 2+2WLocalFenced -obs local -obstype fenced -arch PPC PodWW Wse PodWW Wse

% cat 2+2WLocalFenced.litmus

PPC 2+2WLocalFenced

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

sync | sync ;

lwz r5,0(r4) | lwz r5,0(r4) ;

exists

(0:r5=2 /\ 1:r5=2)

While one produces 2+2WLocalLoop, the looping local observer version of 2+2W as follows:

% diyone -name 2+2WLocalLoop -obs local -obstype loop -arch PPC PodWW Wse PodWW Wse

% cat 2+2WLocalLoop.litmus

PPC 2+2WLocalLoop

"PodWW Wse PodWW Wse"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

}

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

li r6,200 | li r6,200 ;

L00: | L02: ;
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lwz r5,0(r4) | lwz r5,0(r4) ;

cmpwi r5,1 | cmpwi r5,1 ;

bne L01 | bne L03 ;

addi r6,r6,-1 | addi r6,r6,-1 ;

cmpwi r6,0 | cmpwi r6,0 ;

bne L00 | bne L02 ;

L01: | L03: ;

exists (0:r5=2 /\ 1:r5=2)

In the code above, observing loads are attempted at most 200 time or until a value different from 1 is read.

9.2.3 Performance of observers

As an indication of the performance of the various sorts of observers, the following table summarises a litmus
experiment performed on a 8-cores 4-ways SMT Power7 machine machine.

2+2W 2+2WObs 2+2WObsFenced 2+2WObsLoop 2+2WLocal 2+2WLocalFenced 2+2WLo

Positive 2.2M/160M 0/80M 326/80M 25k/80M 2/160M 34k/160M 111k/160M

The row “Positive” shows the number of observed positive outcomes/total number of outcomes produced.
For instance, in the case of 2+2W, we observed the positive outcome x=2 /\ y=2 more than 2 millions
times out of a total of 160 millions outcomes. As a conclusion, all techniques achieve decent results, except
straight observers.

9.3 Three stores or more

In test 2+2W the coherence orders sequence two writes. If there are three writes or more to the same
location, it is no longer possible to identify a coherence order by observing the final contents of the memory
location involved. In other words, observers are mandatory.

The argument to the -obs switch commands the production of observers. It can take four values:

accept Produce observers when absolutely needed. More precisely, given memory location x, no equality
on x appears in the final condition for zero or one write to x, one such appears for two writes, and
observers are produced for three writes or more.

avoid Never produce observers, i.e. fail when there are three writes to the same location.

force Produce observers for two writes or more.

local Always produce local observers.

With diyone, one easily build a three writes test as for instance the following W5:

% diyone -obs accept -obstype fenced -arch PPC -name W5 Wse Wse PodWW Wse PodWW

% cat W5.litmus

PPC W5

"Wse Wse PodWW Wse PodWW"

{ 0:r2=y; 1:r2=y; 1:r4=x; 2:r2=x; 2:r4=y; 3:r2=y; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,3 | li r1,2 | li r1,2 ;

sync | stw r1,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | li r3,1 | li r3,1 | ;

sync | stw r3,0(r4) | stw r3,0(r4) | ;

lwz r4,0(r2) | | | ;

exists (x=2 /\ 0:r1=1 /\ 0:r3=2 /\ 0:r4=3)
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As apparent from the code above, we have a fenced observer thread on y (P0), while the final state of x is
observed directly (x=2). The command line switch -obs force would yield two observers, while -obs avoid

would lead to failure.
With command line switch -obs local we get three local observations of coherence, which suffice to

reconstruct the complete coherence orders:

% diyone -obs local -obstype fenced -arch PPC -name W5Local Wse Wse PodWW Wse PodWW

chi% cat W5Local.litmus

PPC W5Local

"Wse Wse PodWW Wse PodWW"

{

0:r2=x; 0:r4=y;

1:r2=y; 1:r4=x;

2:r2=x;

}

P0 | P1 | P2 ;

li r1,3 | li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 | sync ;

stw r3,0(r4) | stw r3,0(r4) | lwz r3,0(r2) ;

sync | sync | ;

lwz r5,0(r4) | lwz r5,0(r4) | ;

exists (0:r5=2 /\ 1:r5=2 /\ 2:r3=3)

10 Command usage

The diy suite consists in four main tools:

diyone generates one litmus test from the specification of a violation of the sequential consistency memory
model as a cycle — see Sec. 5.2.

diycross generates variations of diyone style tests — see Sec. 8.

diy generates several tests, aimed at confirming that candidate relaxations are relaxed or safe—see Sec. 6.

readRelax Extract relevant information from the results of tests—see Sec. 6.2.

10.1 A note on test names

We have designed a simple naming scheme for tests. A normalised test name decomposes first as a family
name, and second as a description of program-order (or internal) candidate relaxations.

10.1.1 Family names

Cycles (and thus tests) are first grouped by families. Family names describe test structure, based upon exter-
nal communication candidates relaxations. More specifically, external communication candidates relaxations
suffice to settle the directions (W or R) of first and last events of threads, considering the case when those two
events are the same. For instance, consider the cycle “PodWW Rfe PodRR Fre”: there are two threads in
the corresponding test (as there are two external communication candidate relaxations), one thread starts
and ends with a write (written WW), while the other thread starts and ends with a read (written RR). The
family name is thus WW+RR, (or RR+WW, but we choose the former). For reference, a normalised family name is
the minimal amongst the representations of a given cycle, following the lexical order derived from the order
W < WW < RR < RW < WR < R.
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The most common families have nicknames, which are defined by this document4. For instance, consider
the test whose cycle is “PodWR Fre PodWR Fre”. The family name is WR+WR, as this is a two-thread test,
both threads starting with a write and ending with a read. The nickname for this family is, as we already
know, SB (store-buffering). Here is the list of nicknames and family names for two thread tests:

2+2W WW+WW PodWW Wse PodWW Wse
LB RW+RW PodRW Rfe PodRW Rfe
MP WW+RR PodWW Rfe PodRR Fre
R WW+WR PodWW Wse PodWR Fre
S WW+RW PodWW Rfe PodRW Wse
SB WR+WR PodWR Fre PodWR Fre

Isolated writes (and reads) originate from the combinations of communication relaxations, for instance
[Fre,Rfe]. They appear as “W” (and R) in family names. For instance, “Rfe PodRR Fre Rfe PodRR Fre”
contains two such isolated writes, its name is thus W+RR+W+RR and its nickname is, as we know, IRIW
(Independent reads of independent writes). The test “Rfe PodRW Rfe PodRR Fre” contains one isolated
write, as apparent from this diagram:

WRC

a: Wx=1 b: Rx=1

c: Wy=1

d: Ry=1

e: Rx=0

rf
po rf pofr

rf

The family name is thus W+RW+RR and the nickname is WRC (Write to Read Causality).

10.1.2 Descriptive names for variants

Every family has a prototype, homonymous test where every thread code consists in one (for W or R) or
two memory accesses to different locations (for WW, WR etc.). For instance, the MP test is derived from the
cycle “PodWW Rfe PodRR Fre”. Variants are described by tags that illustrates the various program-order
relaxations: they appear after the family name, still with “+” as a separation. For instance the test derived
from “LwSyncdWW Rfe DpAddrdR Fre” is named MP+lwsync+addr.

When all threads have the same tag tag, the test name is abbreviated as Family+tag s. For instance,
the test MP+lwsync+lwsync (“LwSyncdWW Rfe LwSyncdRR Fre”) is in fact MP+lwsyncs. Additionally,
the tag pos (all po’s) is omitted, in order to yield family names for the prototype tests — cf. MP whose
name would have been MP+pos otherwise.

For the sake of terseness, tags do not describe program-order relaxations completely. For instance both
DpAddrdR and DpAddrdW (address dependency to read and write, respectively) have the same tag, addr.
It does not harm for simple tests, as the missing direction can be inferred from the family name. Consider
for instance MP+lwsync+addr and LB+lwsync+addr.

4http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test6.pdf
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MP+lwsync+addr

a: Wx=1

b: Wy=1

c: Ry=1

d: Rx=0

lwsync
rf
fr addr
rf

LB+lwsync+addr

a: Rx=1

b: Wy=1

c: Ry=1

d: Wx=1

lwsync rf
rf

addr

The naming scheme extends to cycles with consecutive program-order relaxations, by separating tags
with “-” when they follow one another: for instance “LwSyncdWW Rfe DpAddrdR PodRR Fre” is named
MP+lwsync+addr-po. Unfortunately, the current naming scheme falls short in supplying non-ambiguous
names to all tests. For instance, “LwSyncdWWRfe DpAddrdW PodWR Fre” is also namedMP+lwsync+addr-

po. In that situation tools will either fail or silently add a numeric suffix, depending on the boolean -addnum

option.

% diycross -addnum false LwSyncdWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Fatal error: Duplicate name MP+lwsync+addr-po

% diycross -addnum true LwSyncdWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Generator produced 2 tests

% cat @all

# diycross -addnum true LwSyncdWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

MP+lwsync+addr-po.litmus

MP+lwsync+addr-po001.litmus

As a result, we get the two tests: MP+lwsync+addr-po and MP+lwsync+addr-po001.

MP+lwsync+addr-po

a: Wx=1

b: Wy=1

c: Ry=1

d: Rz=0

e: Rx=0

lwsync
rf

addr

po

frrf

rf

MP+lwsync+addr-po001

a: Wx=1

b: Wy=1

c: Ry=1

d: Wz=1

e: Rx=0

lwsync
rf

addr

po

fr

rf

Future versions of diy may solve this issue in a more satisfying manner. At the moment, users are advised
not to rely too much on the automatic naming scheme. Users may name tests in a non-ambiguous fashion
by (1) specifying an explicit family name (-name name ) and (2) selecting the numeric scheme (-num true):

% diycross -name MP+X -num true LwSyncdWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Generator produced 2 tests

The diycross generator outputs the same tests as above, with names MP+X000 and MP+X001.

10.2 Common options

All diy test generators accept the following documented command-line options:

-v Be verbose, repeat to increase verbosity.

-version Show version number and exit.

-arch (X86|PPC|ARM) Set architecture. Default is PPC. ARM support is experimental.
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-o <dest> Redirect output to <dest>. This option applies when tools generate a set of tests and an index
file @all, .i.e. in all situations except for diyone simplest operating mode.

If argument <dest> is an archive (extension .tar) or a compressed archive (extension .tgz), the tool
builds an archive. Otherwise, <dest> is interpreted as the name of an existing directory. Default is
“.”, that is tool output goes into the current directory.

-obs (accept|avoid|force|local) Management of observers, default is avoid. See Sec. 9.3.

-obstype (fenced|loop|straight) Style of observers, default is fenced. See Sec. 9.2.

-cond (cycle|uni|observe) Control final condition of tests, default is cycle. In mode cycle, the final
condition identifies executions that correspond to the generating cycle. In mode unicond, the final
condition identifies executions that are valid w.r.t. the uniproc model (see Sec. 12.2). In mode observe
there is no final condition: the litmus and herd tools will simply list the final values of locations.

-optcond Optimise conditions by disregarding the values of loads that are neither the target of Rf, nor the
source of Fr. This is the default.

-nooptcond Do not optimise conditions.

-optcoherence Optimise conditions assuming that the tested system (at least) follows the uniproc model
(see Sec. 12.2).

-nooptcoherence Do not optimise conditions assuming that the tested system (at least) follows the uniproc
model. This is the default.

-neg <bool> Negate final condition, default is false.

-c <bool> Avoid equivalent cycles. Default is true. Setting -c true is intended for debug.

The naming of tests is controlled by the following options:

-name <name> Use name for naming tests, the exact consequences depend on the generator. By default the
generator has no name available.

-num <bool> Use numeric names, i.e. from a base name ¡base¿ the generator will name tests as <base>000,
<base>001 etc. The default depends upon the generator.

-addnum <bool> If true, when faced with tests whose name <name> has already been given, use names
<name>001, <name>002, etc. Otherwise fail in the same situation. The default depends upon the
generator.

-fmt <n> Size of numerical suffixes, default is 3.

10.3 Usage of diyone

The tool diyone has two operating modes. The selected mode depends on the presence of command-line
arguments,

In the first operating mode, diyone takes a non-empty list of candidate relaxations as arguments and
outputs a litmus test. Note that diyone may fail to produce the test, with a message that briefly details the
failure.

% diyone Rfe Rfe PodRR

Test a [Rfe Rfe PodRR] failed:

Impossible direction PodRR Rfe
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In this mode, -name <name> sets the name of the test to <name> and output it into file <name>.litmus.
If absent, the test name is A and output goes to standard output.

Otherwise, i.e. when there are no command-line arguments, diyone reads the standard input and generates
the tests described by the lines it reads. Each line starts with a test name name, followed by “:”, followed
by a list of candidate relaxations RS. Then, diyone acts as if invoked as diyone opts -name name RS.

The tool diyone accepts the following documented option:

-norm Normalise tests and give them normalised names. In the first operating mode (when a cycle is
explicitly given) the test will be named with a family name and a descriptive name. In the second
operating mode, numeric names are used, base being either given explicitly (with option -name <base>)
or being a normalised family name.

10.4 Usage of diycross

diycross produces several tests by “cross producing” lists of candidate relaxations given as arguments, see
Sec 8. diycross also produces an index file @all that lists all produced litmus source files.

If option -name <name> is given, it sets the family name of generated tests, otherwise standard family
names are used (cf. Sec. 10.1). By default descriptive names are used (i.e. -num false) and diycross will
fail if two different tests have the same name (i.e. -addnum false):

% diycross PodWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Fatal error: Duplicate name MP+po+addr-po

Should this happen users can resort either to numeric names,

%diycross -num true PodWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Generator produced 2 tests

con% ls

@all MP000.litmus MP001.litmus

or to disambiguating numeric suffixes.

%diycross -addnum true PodWW Rfe [DpAddrdR,PodRR],[DpAddrdW,PodWR] Fre

Generator produced 2 tests

con% ls

@all MP+po+addr-po001.litmus MP+po+addr-po.litmus

10.5 Usage of diy

As diycross, diy produce several files, hence naming issues are critical. By default, diy uses family names and
the numeric naming scheme (-num true). Users can specify a family name family for all tests with -name

family , or attempt using the descriptive names of Sec 10.1 with -num false. Moreover, diy produces an
index file @all that lists the file names of all tests produced.

The tool diy also accepts the following, additional, documented options.

-conf <file> Read configuration file <file>. A configuration file consists in a list of options, one option
per line. Lines introduced by # are comments and are thus ignored.

-size <n> Set the maximal size of cycles. Default is 6.

-exact Produce cycles of size exactly <n>, in place of size up to <n>.

-nprocs <n> Reject tests with more than <n> threads. Default is 4.

-eprocs Produce tests with exactly <n> threads, where <n> is set above.
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-ins <n> Reject tests as soon as the code of one thread originates from <n> edges or more. Default is 4.

-relax <relax-list> Set relax list. Default is empty. The syntax of <relax-list> is a comma (or space)
separated list of candidate relaxations.

-mix <bool> Mix the elements of the relax list (see below), default false.

-maxrelax <n> In mix mode, upper bound on the number of different candidate relaxations tested together.
Default is 100

-safe <relax-list> Set safe list. Default is empty.

-mode (critical|sc|free|uni) Control generation of cycles, default sc. Those tags command the acti-
vation of some constraints over cycle generation, see below.

-cumul <bool> Permit implicit cumulativity, i.e. authorise building up the sequence Rfe followed by a
fence, or the reverse. Default is true.

The relax and safe lists command the generation of cycles as follows:

1. When the relax list is empty, cycles are built from the candidate relaxations of the safe list.

2. When the relax list is of size 1, cycles are built from its single element r and from the elements of the
safe list. Additionally, the cycle produced contains r at least once.

3. When the relax list is of size n, with n > 1, the behaviour of diy depends on the mix mode:

(a) By default (-mix false), diy generates n independent sets of cycles, each set being built with
one relaxation from the relax list and all the relaxations in the safe list. In other words, diy on a
relax list of size n behaves similarly to n runs of diy on each candidate relaxation in the list.

(b) Otherwise (-mix true), diy generates cycles that contains at least one element from the relax list,
including some cycles that contain different relaxations from the relax list. The cycles will contain
at most m different elements from the relax list, where m is specified with option “-maxrelaxm”.

Generally speaking, diy generates “some” cycles and does not generate “all” cycles (up to a certain
size e.g.). In (default) sc mode, diy performs some optimisation, most of which we leave unspecified. As
an exception to this non-specification, diy in sc (default) mode is guaranteed not to generate redundant
elementary communication relaxation in the following sense: let us call Com the union of Ws, Rf and Fr
(the e|i specification is irrelevant here). Ws being transitive and by definition of Fr, one easily shows that
the transitive closure Com+ of Com is the union of Com plus [Ws,Rf] (Ws followed by Rf) plus [Fr,Rf].
As a consequence, maximal subsequences of communication relaxations in diy cycles are limited to single
relaxations (i.e. Ws, Rf and Fr) and to the above mentioned two sequences (i.e. [Ws,Rf] and [Fr,Rf]). For
instance, [Ws,Ws] and [Fr,Ws] should never appear in diy generated cycles. However, such subsequences can
be generated on an individual basis with diyone, see the example of W5 in Sec 9.3.

In critical mode (-mode critical), cycles are strictly specified as follows:

1. Communication candidate relaxations sequences are limited to Rf,Fr,Ws,[Ws,Rf] and [Fr,Rf], as in sc
mode.

2. No two internal5 candidate relaxations follow one another.

3. If the option -cumul false is specified, diy will not construct the sequence of Rfe followed by a fence
(or B-cumulativity) candidate relaxation or of a fence (or A-cumulativity) candidate relaxation followed
by Rfe.

4. Cycles that access one single memory location are rejected.

5That is, the source and target accesses are by the same processor.
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5. None of the rules above applies to the internal sequences of composite candidate relaxations. For
instance, if [Rfi,PodRR] is given as a candidate relaxation, the sequence “Rfi,PodRR” appears in
cycles.

The cycles described above are the critical cycles of [5].
In free mode (-mode free), cycles are strictly specified as follows:

1. Communication candidate relaxations sequences are limited to Rf,Fr,Ws,[Ws,Rf] and [Fr,Rf]. However,
arbitrary sequences of communication candidates are accepted when they are internal and external or
external and internal.

2. Cycles that access one single memory location are rejected.

Finally, the uni mode enforces the following constraints on cycles:

1. Sequences of communication candidate relaxations are restricted in the same manner as for free mode
(see above).

2. Sequences of Po candidate relaxation are rejected.

10.6 Usage of readRelax

readRelax is a simple tool to extract relevant information out of litmus run logs of tests produced by the diy
generator. For a given run of a given litmus test, the relevant information is:

• Whether the test yielded Ok or not,

• An optional candidate relaxation, which is the one given as argument to diy option -relax at test
build time, or none.

• The safe list relevant to the given test, i.e. the safe candidate relaxations that appear in the tested
cycle.

See Sec. 6.2 for an example.
The tool readRelax takes file names as arguments. If no argument is present, it reads a list of file names

on standard input, one name per line.

11 Additional tools: extracting cycles and classification

When non-standard family names or numeric names are used, it proves convenient to rename tests with the
standard naming scheme. We provide two tools to do so: mcycles that extracts cycles from litmus source
files and classify that normalises and renames cycles.

For instance, one can use diy to generate all simple, critical, tests up to three threads for X86 with the
following configuration file X.conf

-arch X86

-name X

-nprocs 3

-size 6

-safe Pod**,Fre,Rfe,Wse

-mode critical

% diy -conf X.conf

Generator produced 23 tests

% ls
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@all X003.litmus X007.litmus X011.litmus X015.litmus X019.litmus X.conf

X000.litmus X004.litmus X008.litmus X012.litmus X016.litmus X020.litmus

X001.litmus X005.litmus X009.litmus X013.litmus X017.litmus X021.litmus

X002.litmus X006.litmus X010.litmus X014.litmus X018.litmus X022.litmus

Cycles are extracted with mcycles, which takes the index file @all as argument:

% mcycles @all

X000: Wse PodWR Fre PodWR Fre PodWW

X001: Rfe PodRR Fre PodWR Fre PodWW

X002: Wse PodWR Fre PodWW

X003: Wse PodWW Wse PodWR Fre PodWW

X004: Rfe PodRW Wse PodWR Fre PodWW

X005: Rfe PodRR Fre PodWW

X006: Wse PodWW Rfe PodRR Fre PodWW

X007: Rfe PodRW Rfe PodRR Fre PodWW

X008: Wse Rfe PodRR Fre PodWW

X009: Wse PodWW Wse PodWW

...

The output of mcycles can be piped into classify for family classification:

% mcycles @all | classify -arch X86

2+2W

X009 -> 2+2W : PodWW Wse PodWW Wse

3.2W

X010 -> 3.2W : PodWW Wse PodWW Wse PodWW Wse

3.LB

X020 -> 3.LB : PodRW Rfe PodRW Rfe PodRW Rfe

3.SB

X016 -> 3.SB : PodWR Fre PodWR Fre PodWR Fre

ISA2

X007 -> ISA2 : PodWW Rfe PodRW Rfe PodRR Fre

LB

X019 -> LB : PodRW Rfe PodRW Rfe

MP

X005 -> MP : PodWW Rfe PodRR Fre

...

Notice that classify accepts the arch option, as it needs to parse cycles.
Finally, one can normalise tests, using normalised names by piping mcycles output into diyone with options

-norm -num false:

% mkdir src

% mcycles @all | diyone -arch X86 -norm -num false -o src

Generator produced 23 tests

% ls src

2+2W.litmus @all R.litmus WRC.litmus WRW+WR.litmus Z6.2.litmus

3.2W.litmus ISA2.litmus RWC.litmus WRR+2W.litmus WWC.litmus Z6.3.litmus

3.LB.litmus LB.litmus SB.litmus WRW+2W.litmus Z6.0.litmus Z6.4.litmus

3.SB.litmus MP.litmus S.litmus W+RWC.litmus Z6.1.litmus Z6.5.litmus

Alternatively, one may instruct classify to produce output for diyone. In that case one should pass option
-diyone to classify so as to instruct it to produce output that is parsable by diyone:
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% rm -rf src && mkdir src

% mcycles @all | classify -arch X86 -diyone | diyone -arch X86 -o src

Generator produced 23 tests

% ls src

2+2W.litmus @all R.litmus WRC.litmus WRW+WR.litmus Z6.2.litmus

3.2W.litmus ISA2.litmus RWC.litmus WRR+2W.litmus WWC.litmus Z6.3.litmus

3.LB.litmus LB.litmus SB.litmus WRW+2W.litmus Z6.0.litmus Z6.4.litmus

3.SB.litmus MP.litmus S.litmus W+RWC.litmus Z6.1.litmus Z6.5.litmus

11.1 Usage of mcycles

The tool mcycles has no options and takes litmus source files or index files as arguments. It outputs a list
of lines to standard output. Each line starts with a test name, suffixed by “:”, then the cycle of the named
test. Notice that this format is the input format to diyone in its second operating mode — see Sec. 10.3.

It is important to notice that, for mcycles to extract cycles, those must be present as meta-information in
source files. In practice, this means that mcycles operates normally on sources produced by diyone, diycross
and diy. Moreover only one instance of a given cycle will be output.

11.2 Usage of classify

The tool classify reads its standard input, interpreting is as a list of cycles in the output format of mcycles.
It normalises and classifies those cycles. The tool classify accepts the following documented options:

-arch (X86|PPC|ARM) Set architecture. Default is PPC. ARM support is experimental.

-u Instruct classify to fail when two tests have the same normalised name. Otherwise classify will output
one line per test, regardless of duplicate names.

-diyone Output a normalised list of names and cycles, which is legal input for diyone.
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Part III

Simulating memory models with herd

The tool herd is a memory model simulator. Users may write simple, single events, axiomatic models of their
own and run litmus tests on top of their model. The herd distribution already includes some models.

The authors of herd are Jade Alglave and Luc Maranget.

12 Writing simple models

12.1 Sequential consistency

The simulator herd accepts models written in text files. For instance here is sc.cat, the definition of the
sequentially consistent (SC) model:

SC

(* Sequential consistency *)

acyclic po | fr | rf | co

The model above illustrate two features of model definitions:

1. The computation of new relations from other relations, and their binding to a name with the let

construct. Here, a new relation com is the union “|” of the three pre-defined communication relations.

2. The peformance of some checks. Here the relation “po|com” (i.e. the union of program order po and
of communication relations) is required to be acyclic.

We postpone the discussion of the show instruction, see Sec. 13.
One can then run some litmus test, for instance SB (for Store Buffering, see also Sec. 1.1), on top of the

SC model:

% herd -model ./sc.cat SB.litmus

Test SB Allowed

States 3

0:EAX=0; 1:EAX=1;

0:EAX=1; 1:EAX=0;

0:EAX=1; 1:EAX=1;

No

Witnesses

Positive: 0 Negative: 3

Condition exists (0:EAX=0 /\ 1:EAX=0)

Observation SB Never 0 3

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

The output of herd mainly consists in the list of final states that are allowed by the simulated model.
Additional output relates to the test condition. One sees that the test condition does not validate on top
of SC, as “No” appears just after the list of final states and as there is no “Positive” witness. Namely, the
condition “exists (0:EAX=0 /\ 1:EAX=0)” reflects a non-SC behaviour, see Sec. 5.2.

The simulator herd works by generating all executions of a given test. By “execution” we mean a choice
of events, program order po, read-from rf, and coherence orders co6. In the case of the SB example, we get
the following four executions:

6The last communication relation from-read fr, derives from rf and co. A read event r is fr-before a write event w when r

takes its value from a write w0 that is co-before w.
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a: Wx=1

b: Ry=1 d: Rx=1

c: Wy=1

po rf
rf
po

a: Wx=1

b: Ry=1

c: Wy=1

d: Rx=0

po
rf
pofr
rf

a: Wx=1

b: Ry=0 d: Rx=1

c: Wy=1

po
rffr

po

rf

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

po
fr

pofr

rf
rf

Indeed, there is no choice for the program order po, as there are no conditional jumps in this example; and no
choice for the coherence orders co either, as there is only one store per location, which must be co-after the
initial stores (not pictured for clarity). Then, there are two read events from locations x and y respectively,
which take their values either from the initial stores or from the stores in program. As a result, there are
four possible executions. The model sc.cat gets executed on each of the four (candidate) executions. The
three first executions are accepted and the last one is rejected, as it presents a cycle in po∪ fr. The following
diagram pictures the ghb relation. The cycle is obvious:

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

po

fr

po

fr

rf

rf

12.2 Total Store Order (TSO)

However, the non-SC execution shows up on x86 machines, whose memory model is TSO. As TSO relaxes
the write-to-read order, we attempt to write a TSO model tso-00.cat, by simply removing write-to-read
pairs from the acyclicity check:
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"A first attempt for TSO"

(* Communication relations that order events*)

let com-tso = rf | co | fr

(* Program order that orders events *)

let po-tso = WW(po) | RM(po)

(* TSP global-happens-before *)

let ghb = po-tso | com-tso

acyclic ghb

show ghb

This model illustrates another feature of model definitions: filters such as WW and RM restrict their argument
by selecting some sort of events. As W stands for write events, R for read events and M for all memory events,
the effect of let po-tso = WW(po)|RM(po) is to define po-tso as the program order minus write-to-read
pairs.

We run SB on top of the tentative TSO model:

% herd -model tso-00.cat SB.litmus

Test SB Allowed

States 4

0:EAX=0; 1:EAX=0;

0:EAX=0; 1:EAX=1;

0:EAX=1; 1:EAX=0;

0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 1 Negative: 3

...

The non-SC behaviour is now accepted, as write-to-read po-pairs do not participate to the acyclicity check
any more. In effect, this allows the last execution above, as ghb (i.e. po-tso ∪ com-tso) is acyclic.
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a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

po

ghb fr

po

ghbfr

However, our model tso-00.cat is flawed: it is still to strict, forbidding some behaviours that the TSO
model should accept. Consider the test SB+rfi-pos, which is test STFW-PPC for X86 from Sec. 1.3 with a
normalised name (see Sec. 10.1). This test targets the following execution:

59



a: Wx=1

b: Rx=1

c: Ry=0

d: Wy=1

e: Ry=1

f: Rx=0

rf

po

fr

rf

po

fr

rf

rf

Namely the test condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) specifies that Thread 0
writes 1 into location x, reads the value 1 from the location x (possibly by store forwarding) and then reads
the value 0 from the location y; while Thread 1 writes 1 into y, reads 1 from y and then reads 0 from x.
Hence, this test derives from the previour SB by adding loads in the middle, those loads being satisfied from
local stores. As can be seen by running the test on top of the tso-00.cat model, the target execution is
forbidden:

% herd -model tso-00.cat SB+rfi-pos.litmus

Test SB+rfi-pos Allowed

States 15

0:EAX=0; 0:EBX=0; 1:EAX=0; 1:EBX=0;

...

0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=1;

No

Witnesses

Positive: 0 Negative: 15

..
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However, running the test with litmus demonstrates that the behaviour is observed on some X86 machine:

% arch

x86_64

% litmus -mach x86 SB+rfi-pos.litmus

...

Test SB+rfi-pos Allowed

Histogram (4 states)

11589 *>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=0;

3993715:>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

3994308:>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

388 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=1;

Ok

Witnesses

Positive: 11589, Negative: 7988411

Condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) is validated

...

As a conclusion, our tentative TSO model is too strong. The following diagram pictures its ghb relation:
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a: Wx=1

b: Rx=1

c: Ry=0

d: Wy=1

e: Ry=1

f: Rx=0

rf ghb

ghb

fr ghb rf ghb

frghb

ghb

rf

rf

One easily sees that ghb is cyclic, wheras it should not. Namely, the internal read-from relation rfi does not
create global order in the TSO model. Hence, rfi is not included in ghb. We rephrase our tentative TSO
model, resulting into the new model tso-01.cat:

"A second attempt for TSO"

(* Communication relations that order events*)

let com-tso = rfe | co | fr

(* Program order that orders events *)

let po-tso = WW(po) | RM(po)

(* TSP global-happens-before *)

let ghb = po-tso | com-tso

acyclic ghb

show ghb

As can be observed above rfi (internal read-from) is no longer included in ghb. However, rfe (external
read-from) still is.
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As intended, this new tentative TSO model allows the behaviour of test SB+rfi-pos:

% herd -model tso-01.cat SB+rfi-pos.litmus

Test SB+rfi-pos Allowed

States 16

...

0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

...

Ok

Witnesses

Positive: 1 Negative: 15

...

And indeed, the global-happens-before relation is no-longer cyclic:

a: Wx=1

b: Rx=1

c: Ry=0

d: Wy=1

e: Ry=1

f: Rx=0

rf

ghb

ghbfr

rf

ghbfr ghb

rf

rf

We are not done yet, as our model is too weak in two aspects. First, it has no semantics for fences. As
a result the test SB+mfences is allowed, whereas it should be forbidden, as this is the very purpose of the
fence mfence.
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a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

mfence

fr

fr

mfencerf

rf

One easily solves this issue by adding the mfence relation to the definition of po-tso:

let po-tso = WW(po) | RM(po) | mfence

But the resulting model is still too weak, as it allows some behaviours that any model must reject for
the sake of single thread correctness. The following test CoRWR illustrates the issue:

X86 CoRWR

{ }

P0 ;

MOV EAX,[x] ;

MOV [x],$1 ;

MOV EBX,[x] ;

exists (0:EAX=1 /\ 0:EBX=0)
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a: Rx=1

b: Wx=1

c: Rx=0

rf

frrf

The TSO check “acyclic po-tso|com-tso” does not suffice to reject two absurd behaviours pictured in the
execution diagram above: (1) the read a is allowed to read from the po-after write b, as rfi is not included in
com-tso; and (2) the read c is allowed to read the initial value of location x although this (unpictured) write
is co-before the write b, as WR(po) is not in po-tso.

For any model, we rule out those very untimely behaviours by the so-called uniproc check that states
that executions projected on events that access one variable only are SC. In practice, having defined po-loc

as po restricted to events that touch the same address, we further require the acyclicity of the relation
po-loc|fr|rf|co. In the TSO case, the uniproc check can be somehow simplified by considering only the
cycles in po-loc|fr|rf|co that are not already rejected by the main check of the model. This amounts to
design specific checks for the two relations that are not global in TSO: rfi and WR(po). Doing so, we finally
produce a correct model for TSO tso-02.cat:

"A third attempt for TSO"

(* Uniproc check specialized for TSO *)

irreflexive RW(po-loc);rfi as uniprocRW

irreflexive WR(po-loc);fri as uniprocWR

(* Communication relations that order events*)

let com-tso = rfe | co | fr

(* Program order that orders events *)

let po-tso = WW(po) | RM(po) | mfence

(* TSP global-happens-before *)

let ghb = po-tso | com-tso

show mfence ghb

acyclic ghb as tso

This last model illustrates other features of herd: herdmay also performs irreflexivity checks with the keyword
“irreflexive”; and the checks can be given names by suffixing them with “as name”. This last feature
will be used in Sec. 13.2

13 Producing pictures of executions

The simulator herd can be instructed to produce pictures of executions. Those pictures are instrumental in
understanding and debugging models. It is important to understand that herd does not produce pictures
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by default. To get pictures one must instruct herd to produce pictures of some executions with the -show

option. This option accepts specific keywords, its default being “none”, instructing herd not to produce any
picture.

A frequentlty used keyword is “prop” that means “show the executions that validate the proposition in
the final condition”. Namely, the final condition in litmus test is a quantified boolean proposition as for
instance “exists (0:EAX=0 /\ 1:EAX=0)” at the end of test SB.

But this is not enough, users also have to specify what to do with the picture: save it in file in the
DOT format of the graphviz graph visualization software, or display the image,7 or both. One instructs herd
to save images with the -o dirname option, where dirname is the name of a directory, which must exists.
Then, when processing the file name.litmus, herd will create a file name.dot into the directory dirname.
For displaying images, one uses the -gv option.

As an example, so as to display the image of the non-SC behaviour of SB, one should invoke herd as:

% herd -model tso-02.cat -show prop -gv SB.litmus

As a result, users should see a window popping and displaying this image:

7This option requires the Postscript visualiser gv.
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Test SB, Generic(A third attempt for TSO)

Thread 0

Thread 1

a: Wx=1
proc:0 poi:0
MOV [x],1

b: Ry=0
proc:0 poi:1
MOV EAX,[y]

c: Wy=1
proc:1 poi:0
MOV [y],1

d: Rx=0
proc:1 poi:1
MOV EAX,[x]

po

ghbfr

po

ghb fr
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Figure 3: The non-SC behaviour of SB is allowed by TSO

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

po

ghb fr

po

ghbfr

Notice that we got the PNG version of this image as follows:

% herd -model tso-02.cat -show prop -o /tmp SB.litmus

% dot -Tpng /tmp/SB.dot -o SB+CLUSTER.png

That is, we applied the dot tool from the graphviz package, using the appropriate option to produce a PNG
image.

One may observe that there are ghb arrows in the diagram. This results from the show ghb instruction
at the end of the model file tso-02.cat.

13.1 Graph modes

The image above much differs from the one in Sec. 12.2 that describes the same execution and that is
reproduced in Fig. 3

In effect, herd can produce three styles of pictures, dot clustered pictures, dot free pictures, and neato
pictures with explicit placement of the events of one thread as a colum. The style is commanded by the
-graph option that accepts three possible arguments: cluster (default), free and columns. The following
pictures show the effect of graph styles on the SB example:
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-graph cluster -graph free -graph columns

Thread 0

Thread 1

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

po

ghb fr

po

ghb fr

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

po:0

ghb fr

po:1

ghb fr

Thread 0 a: Wx=1

b: Ry=0

c: Wy=1

Thread

d: Rx=0

po

ghb fr

po

ghb fr

Notice that we used another option -squished true that much reduces the information displayed in nodes.
Also notice that the first two pictures are formatted by dot, while the rightmost picture is formatted by
neato.

One may also observe that the “-graph columns” picture does not look exactly like Fig. 3. For instance
the ghb arrows are thicker in the figure. There are many parameters to control neato (and dot), many of
which are accessible to herd users by the means of appropriate options. We do not intend to describe them
all. However, users can reproduce the style of the diagram of this manual using yet another feature of herd:
configuration files that contains settings for herd options and that are loaded with the -conf name option.
In this manual we mostly used the doc.cfg configuration file. As this file is present in herd distribution,
users

can use the diagram style of this manual:

% herd -conf doc.cfg ...

13.2 Showing forbidden executions

Images are produced or displayed once the model has been executed. As a consequence, forbidden executions
won’t appear by default. Consider for instance the test SB+mfences, where the mfence instruction is used
to forbid SB non-SC execution. Runing herd as
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% herd -model tso-02.cat -conf doc.cfg -show prop -gv SB+mfences.litmus

will produce no picture, as the TSO model forbids the target execution of SB+mfences.
To get a picture, we can run SB+mfences on top of the mininal model, a pre-defined model that allows

all executions:

% herd -model minimal -conf doc.cfg -show prop -gv SB+mfences.litmus

And we get the picture:

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

mfence

fr

fr

mfencerf

rf

It is worth mentioning again that although the minimal model allows all executions, the final condition
selects the displayed picture, as we have specified the -show prop option.

The picture above shows mfence arrows, as all fence relations are displayed by the minimal model.
However, it does not show the ghb relation, as the minimal model knows nothing of it. To display ghb we
could write another model file that would be just as tso-02.cat, with checks erased. The simulator herd
provides a simpler technique: one can instruct herd to ignore either all checks (-through invalid), or a
selection of checks (-skipcheck name1. . . namen). Thus, either of the following two commands

% herd -through invalid -model tso-02.cat -conf doc.cfg -show prop -gv SB+mfences.litmus

% herd -skipcheck tso -model tso-02.cat -conf doc.cfg -show prop -gv SB+mfences.litmus

will produce the picture we wish:
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a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

mfenceghb

ghb fr

ghb fr

mfenceghbrf

rf

Notice that mfence and ghb are displayed because of the instruction “show mfence ghb” (fence relation are
not shown by default); while -skipcheck tso works because the tso-02.cat model names its main check
with “as tso”.

The image above is barely readable. For such graphs with many relations, the cluster and free modes
are worth a try. The commands:

% herd -skipcheck tso -model tso-02.cat -conf doc.cfg -show prop -graph cluster -gv SB+mfences.litmus

% herd -skipcheck tso -model tso-02.cat -conf doc.cfg -show prop -graph free -gv SB+mfences.litmus

will produce the images:
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Thread 0

Thread 1

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

mfence ghb

ghbfr

mfence ghb

ghb fr

rf

rf

a: Wx=1

b: Ry=0

c: Wy=1

d: Rx=0

po:0mfenceghb

frghb

po:1mfenceghb

frghb

rf

rf

Namely, command line options are scanned left-to-right, so that most of the settings of doc.cfg are kept8

(for instance thick ghb arrows), while the graph mode is overriden.

14 Model definitions

We describe our langage for defining models. The syntax of the language is given in BNF-like notation. Ter-
minal symbols are set in typewriter font (like this). Non-terminal symbols are set in italic font (like that).
An unformatted vertical bar . . . | . . . denotes alternative. Square brackets [ . . .] denote optional components.
Curly brackets { . . .} denotes zero, one or several repetitions of the enclosed components.

Model source files may contain comments of the OCaml type ((*. . . *), can be nested), or line comments
starting with “#” and running until end of line.

14.1 Identifiers

letter ::= a . . . z | A . . . Z

digit ::= 0 . . . 9

id ::= letter {letter | digit | | . | -}

8The setting of showthread is also changed, by the omitted -showthread true command line option
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Identifiers are rather standard: they are a sequence of letters, digits, “ ” (the underscore character), “.”
(the dot character) and “-” (the minus character), starting with a letter. Using the minus character inside
identifiers may look a bit surprising. We did so as to allow identifiers such as po-loc.

At startup, pre-defined identifiers are bound to relations between memory events. Those relations describe
a candidate execution. Executing the model means allowing or forbiding that candidate execution.

A first pre-defined identifier is id, the identity. Other pre-defined identifiers are the program order po
and its refinements:

identifier name description
po program order instruction order lifted to events
po-loc po restricted to the

same address
events are in po and touch the same address

addr address dependency the address of the second event depends on the value
loaded by the first (read) event

data data dependency the value stored by the second (write) event depends
on the value loaded by the first (read) event

ctrl control dependency the second event is in a branch controled by the value
loaded by the commfirst (read) event

ctrlisync/ctrlisb control dependency +
isync/isb

the branch additionally contains a isync/isb barrier
before the second event

Other pre-defined relations denote the presence of a specific fence (or barrier) in-between two events, those
are mfence, sfence, lfence (X86); sync, lwsync, lwsync, isync (Power); and dsb, dmb, dsb.st, dmb.st,
isb (ARM).

Finally, pre-defined identifiers are bound the communication relations:

identifier name description
rf read-from links a write w to a read r taking its value from w
co coherence total order over writes to the same address
fr from-read links a read r to a write w′ co-after the write w from

which r takes its value
rfi, fri, coi internal communica-

tions
communication between events of the same thread

rfe, fre, coe external communica-
tions

communication between events of different threads
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14.2 Expressions

Expressions are evaluated by herd, yielding a relation over memory events as a value. A relation can be seen
as a set of pairs of memory events.

expr ::= 0

| id

| expr * | expr + | expr ?
| expr | expr | expr ; expr | expr \ expr | expr & expr

| selector ( expr )

| id ( args )

| fun ( params ) -> expr

| let binding {and binding} in expr

| let rec valbinding {and valbinding} in expr

| ( expr )

selector ::= MM | MR | RM | MW | WM | RR | WR | RW | WW
| AA | AP | PA | PP

args ::= ǫ
| expr {, expr}

params ::= ǫ
| id {, id}

binding ::= valbinding | funbinding

valbinding ::= id = expr

funbinding ::= id ( params ) = expr

Simple expressions

Simple expressions are the empty relation (keyword 0) and identifiers id. Identifiers are bound to values,
either before the execution (see pre-defined identifiers in Sec. 14.1), or by the model itself.

Operator expressions

The transitive and reflexive-transitive closure of an expression are performed by the postfix operators + and
* . The construct expr ? (option) evaluates to the union of expr value and of the identity relation.

Infix operators are | (union), ; (sequence), & (intersection) and \ (set difference). The precedence
of operators is as follows: postfix operators bind tighter than infix operators. Infix operators from higher
precedence to lower precedence are: & , \ , ; and | . All infix operators are right-associative, except
set difference which is left-associative.

For the record, given two relations r1 and r2, the sequence r1; r2 is defined as {(x, y) | ∃z, (x, z) ∈
r1 ∧ (z, y) ∈ r2}.

Selectors

Selectors are filters that operate on relations. The value of selector ( expr ) is some subrelation of the value
of expr. Which subrelation depends upon selector. Selectors are two-letters keywords with the first letter
operating on the first component of pairs and the second letter operating on the second component of pairs.

More precisely, we define the semantics of selector letters as predicates over memory events: M always
yield true, R yields true on read events, W yields true on write events, A yields true on atomic events
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(produced by X86 locked instructions, or ARM/Power load reserve and store conditional instructions), and
P yields true on ordinary (plain) events. Then, we define:

XY (r) = {(x, y) ∈ r | X(x) ∧ Y (y)}

For instance, the expression RW(po) yields the read-to-write pairs in program order.

Function calls

Functions calls are written id ( expr1 , . . . , exprn ). That is, functions have an arity (n above, which can
be zero) and arguments are given as a comma separated list of expressions. Our language have call-by-value
semantics. That is, the effective parameters expr1 , . . ., exprn are evaluated before being bound to formal
parameters.

Functions

Functions are first class values, as reflected by the anonymous function construct fun ( params ) -> expr.
Function arity is defined by the length of its formal parameter list params, which can be empty. Notice that
functions have the usual static scoping semantics: variables that appear free in function bodies (expr above)
are bound to the value of such free variable at function creation time.

Local bindings

The local binding construct let [rec]bindings in expr binds the names defined by bindings for evaluating
the expression expr .

Both non-recursive and recursive bindings are allowed. The function binding id ( params ) = expr is
syntactic sugar for id = fun ( params ) -> expr. It is allowed in non-recursive bindings only as there is little
point in defining recursive function in our setting.

In the following we only consider value bindings id = expr. The construct

let id1 = expr1 and . . . and idn = exprn in expr

evaluates expr1, . . . , exprn, and binds the names id1, . . . , idn to the resulting values.
The construct

let rec id1 = expr1 and . . . and idn = exprn in expr

computes the least fixpoint of the equations id1 = expr1,. . . , idn = exprn. It then binds the names
id1, . . . , idn to the resulting values. The least fixpoint computation applies only to relations, using inclusion
for ordering. Notice that let rec id = fun ( params ) -> expr in . . . is legal syntax. Such a definition will
yield a runtime error.

Parenthesized expressions

The expression ( expr ) has the same value as expr.
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14.3 Instructions

Instruction are executed for their effect. There are three kind of effects: adding new bindings, checking a
condition, and specifying relations that are shown in pictures.

instruction ::= let binding {and binding}
| let rec valbinding {and valbinding}
| check expr [as id]
| show expr as id

| show id {, id}
| unshow id {, id}

check ::= acyclic | irreflexive | empty

Bindings

The let and let rec constructs bind value names for the rest of model execution. See the subsection
on bindings in Section 14.2 for additional information on the syntax and semantics of bindings.

Recursive definitions computes fixpoints of relations. For instance, the following fragment computes the
transitive closure of all communication relations:

let com = rf | co | fr

let rec complus = com | (complus ; complus)

Notice that the instruction let complus = (rf|co|fr)+ is equivalent.
There are no recursive functions, as those would not be very useful in our limited language. Nevertheless,

one may for instance write a generic transitive closure function by using a local recursive binding:

let tr(r) = let rec t = r | (t;t) in t

let complus = tr(rf|co|fr)

Again notice that the instruction let complus = (rf|co|fr)+ is equivalent.

Checks

The construct

check expr

evaluates expr and applies check. If the check succeeds, that is if the relation is acyclic, irreflexive or empty;
depending on check being acyclic , irreflexive or empty , execution goes on. Otherwise, execution
stops.

The performance of a check can optionally be named by appending as id after it. The feature permits
not to perform some checks at user’s will, thanks to the -skipcheck id command line option.

Show (and unshow) directives

The constructs:

show id {, id} and unshow id {, id}

take (non-empty, comma separated) lists of identifiers as arguments. The show construct adds the present
values of identifiers for being shown in pictures. The unshow construct removes the identifiers from shown
relations.

The more sophisticated construct

show expr as id

evaluates expr to a relation, which will be shown in pictures with label id. Hence showid can be viewed as
a shorthand for showid asid
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14.4 Models

model ::= model-comment {instruction}

model-comment ::= id

| string

A model is a a list of instruction preceded by a small comment, which can be either a name that follows
herd conventions for identifiers, or a string enclosed in double quotes “"”.

Models operate on candidate executions (see Sec. 14.1), instructions are executed in sequence, until
one instruction stops, or until the end of the instruction list. In that latter case, the model accepts the
execution. The accepted execution is then passed over to the rest of herd engine, in order to collect final
states of locations and to display pictures.

15 Usage of herd

Arguments

The command herd handles its arguments like litmus. That is, herd interprets its argument as file names.
Those files are either a single litmus test when having extension .litmus, or a list of file names when prefixed
by @.

Options

There are many command line options. We describe the more useful ones:

General behaviour

-version Show version number and exit.

-libdir Show installation directory and exit.

-v Be verbose, can be repeated to increase verbosity.

-q Be quiet, suppress any diagnostic message.

-conf <name> Read configuration file name. Configuration files have a very simple syntax: a line “opt arg”
has the same effect as the command-line option “-opt arg”.

-o <dest> Output files into directory <dest>. Notice that <dest> must exist. At the moment herd may
output one .dot file per processed test: the file for test base.litmus is named base.dot. By default
herd does not generate .dot files.

-suffix <suf> Change the name of .dot files into basesuff .dot. Useful when several .dot files derive from
the same test. Default is the empty string (no suffix).

-gv Fork the gv Postscript viewer to display execution diagrams.

-dumpes <bool> Dump genererated event structures and exit. Default is false. Event structures will be
dumped in a .dot file whose name is determined as usual — See options -o and -suffix above.
Optionally the event structures can be displayed with the -gv option.

-unroll <int> The setting -unroll n performs backwards jumps n times. This is a workaround for one
of herd main limitation: herd does not really handle loops. Default is 2.

-hexa <bool> Print numbers in hexadecimal. Default is false (numbers are printed in decimal).
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Engine control The main purpose of herd is to run tests on top of memory models. For a given test, herd
performs a three stage process:

1. Generate candidate executions.

2. For each exection, run the model. The model may reject or accept the execution.

3. For each candidate that the model accepts, record observed locations and a diagram of the execution
(if instructed so).

We now describe options that control those three stages.

-model (herd|cav12|minimal|uniproc|x86tso|<filename>.cat) Select model, this option accept one
tag or one file name with extension .cat. Tags instruct herd to select an internal model, while file
names are read for a model definition. By default, herd run tests on top of an advanced (herd) model
for Power and ARM, and on top of x86tso for X86. Other (documented) model tags are:

• cav12, the model of [4] (Power);

• minimal, the minimal model that allows all executions;

• uniproc, the uniproc model that checks single-thread correctness.

In fact, herd accepts potentially infinitely many models, as models can given in text files in an ad-
hoc language described in Sec. 14. The herd distribution includes several such models: herd.cat,
minimal.cat, uniproc.cat and x86tso.cat are text file versions of the homonymous internal models,
but may produce pictures that show different relations. Model files are searched according to the same
rules as configuration files.

-through (all|invalid|none) Let additional executions reach the final stage of herd engine. This option
permits users to generate pictures of forbidden executions, which are otherwise rejected at an early
stage of herd engine — see Sec. 13.2. Namely, the default “none” let only valid (according to the active
model) executions through. The behaviour of this option differs between internal and text file models:

• For internal models: the tag all let all executions go through; while the tag invalid will reject
executions that violate uniproc, while letting other forbidden execution go through.

• Text file models: the tags all and invalid let all executions go through. For such models,
a more precise control over executions that reach herd final phase can be achieved with the
option -skipcheck — see next option.

Default is none.

-skipcheck <name 1,...,namen> This option applies to text file models. It instructs herd to ignore the
outcomes of the given checks. For the option to operate, checks must be named in the model file with
the as name construct – see Sec. 14.3. Notice that the arguments to -skipcheck options cumulate.
That is, “-skipcheck name1 -skipcheck name2” acts like “-skipcheck name1,name2”.

-strictskip <bool> Setting this option (-strictskip true), will change the behaviour of the previous
option -skipcheck: it will let executions go through when the skipped checks yield false and the
unskipped checks yield true. This option comes handy when one want to observe the executions that
fail one (or several) checks while passing others. Default is false.

-optace <bool> Optimise the axiomatic candidate execution stage. When enabled by -optace true, herd
does not generate candidate executions that fail the uniproc test. The default is “true” for internal
models (except the minimal model), and “false” for text file models. Notice that -model uniproc.cat

and -model minimal.cat -optace true should yield identical results, the second being faster. Set-
ting -optace true can lower the execution time significantly, but one should pay attention not to
design models that forget the uniproc condition.
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-show (prop|neg|all|cond|wit|none) Select execution diagrams for picture display and generation. Ex-
ecution diagrams are shown according to the final condition of test. The final condition is a quantified
boolean proposition exists p, ~exists p, or forall p. The semantics of recognised tags is as follows:

• prop Picture executions for which p is true.

• neg Picture executions for which p is false.

• all Picture all executions.

• cond Picture executions that validate the condition, i.e. p is true for exists and forall, and
false for ~exists.

• wit Picture “interesting” executions, i.e. p is true for exists and ~exists, and false for forall.

• none Picture no execution.

Default is none.

Discard some observations Those options intentionally omit some of the final states that herd would
normally generate.

-speedcheck (false|true|fast) When enabled by -speedcheck true or -speedcheck fast, attempt to
settle the test condition. That is, herd will generate a subset of executions (those named “interesting”
above) in place of all executions. With setting -speedcheck fast, herd will additionally stop as soon
as a condition exists p is validated, and as soon as a condition ~exists p or forall p is invalidated.
Default is false.

-nshow <int> Stop once <int> pictures have been collected. Default is to collect all (specified, see option
-show) pictures.

Control dot pictures These options control the content of DOT images.
We first describe options that act at the general level.

-graph (cluster|free|columns) Select main mode for graphs. See Sec. 13.1. The default is cluster.

-dotmode (plain|fig) The setting -dotmode fig produces output that includes the proper escape se-
quence for translating .dot files to .fig files (e.g. with dot -Tfig...). Default is plain.

-dotcom (dot|neato|circo) Select the command that formats graphs displayed by the -gv option. The
default is dot for the cluster and free graph modes, and neato for the columns graph mode.

-showevents (all|mem|noregs) Control which events are pictured:

• all Picture all events.

• mem Picture memory events.

• noregs Picture all events except register events, i.e. memory, fences and branch events.

Default is noregs.

-mono <bool> The setting -mono true commands monochrome pictures. This option acts upon default
color selection. Thus, it has no effect on colors given explicitely with the -edgeattr option.

-scale <float> Global scale factor for graphs in columns mode. Default is 1.0.

-xscale <float> Global scale factor for graphs in columns mode, x direction. Default is 1.0.

-yscale <float> Global scale factor for graphs in columns mode, y direction. Default is 1.0.
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-showthread <bool> Show thread numbers in figures. In cluster mode where the events of a thread are
clustered, thread cluster have a label. In free mode po edges are suffixed by a thread number. In
columns mode, columhs have a header node that shows the thread number. Default is true.

-texmacros <bool> Use latex commands in some text of pictures. If activated (-showthread true),
thread numbers are shown as \myth{n}. Assembler instructions are locations in nodes are argu-
ment to an \asm command. It user responsability to define those commands in their LATEX docu-
ments that include the pictures. Possible definitions are \newcommand{\myth}[1]{Thread~#1} and
\newcommand{\asm}[1]{\texttt{#1}}. Default is false.

A few options control picture legends.

-showlegend <bool> Add a legend to pictures. By default legends show the test name and a comment from
the executed model. This comment is the first item of model syntax — see Sec 14.4. Default is true.

-showkind <bool> Show test kind in legend. The kind derive from the quantifier of test final condition, kind
Allow being exists, kind Forbid being ~exists, and kind Require being forall. Default is false.

-shortlegend <bool> Limit legend to test name. Default is false.

A few options control what is shown in nodes and on their sizes, i.e. on how events are pictured.

-squished <bool> The setting -squished true drastically limits the information displayed in graph nodes.
This is usually what is wanted in modes free and columns. Default is false.

-fixedsize <bool> This setting is meaningfull in columns graph mode and for squished nodes. When set
by -fixedsize true it forces node width to be 65% of the space between columns. This may sometime
yield a nice edge routing. Default is false

-extrachars <float> This setting is meaningful in columns graph mode and for squished nodes. When
the size of nodes is not fixed (i.e. -fixedsize false and default), herd computes the width of nodes
by counting caracters in node labels and scaling the result by the font size. The setting -extrachars v
commands adding the value v before scaling. Negative values are of course accepted. Default is 0.0.

-showobserved <bool> Highlight observed memory read events with stars “*”. A memory read is observed
when the value it reads is stored in a register that appears in final states. Default is false.

-brackets <bool> Show brackets around locations. Default is false.

Then we list options that offer some control on which edges are shown. We recall that the main controls
over the shown and unshown edges are the show and unshow directives in model definitions — see Sec. 14.3.
However, some edges can be controled only with options (or configuration files) and the -unshow option
proves convenient.

-showpo <bool> Show program order (po) edges. Default is true. Default is false.

-showinitrf <bool> Show read-from edges from initial state. Default is false.

-showfinalrf <bool> Show read-from edges to the final state, i.e show the last store to locations. Default
is false.

-showfr <bool> Show from-read edges. Default is true.

-doshow <name 1,...,namen> Do show edges labelled with name1,. . . ,namen. This setting applies when
names are bound in model definition.

-unshow <name 1,...,namen> Do not show edges labelled with name1,. . . ,namen. This setting applies at
the very last momement and thus cancels any show directive in model definition and any -doshow

command line option.
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Other options offer some control over some of the attributes defined in Graphviz software documentation.
Notice that the controlled attributes are omitted from DOT files when no setting is present. For instance
in the absence of a -spline <tag> option, herd will generate no definition for the splines attribute thus
resorting to DOT tools defaults. Most of the following options accept the none argument that restores their
default behaviour.

-splines (spline|true|line|false|polyline|ortho|curved|none) Define the value of the splines at-
tribute. Tags are replicated in output files as the value of the attribute, except for none.

-margin <float|none> Specifies the margin attribute of graphs.

-pad <float|none> Specifies the pad attribute of graphs.

-sep <string|none> Specifies the sep attribute of graphs. Notice that the argument is an arbitray string,
so as to allow DOT general syntax for this attribute.

-fontname <string|none> Specifies the graph fontname attribute.

-fontsize <int|none> Specifies the fontsize attribute n of all text in the graph.

-edgefontsizedelta <int> option -edgefontsizedelta m sets the fontsize attributes of edges to n+m,
where n is the argument to the -fontsize option. Default is 0. This option has no effect if fontsize is
unset.

-penwidth <float|none> Specifies the penwidth attribute of edges.

-arrowsize <float|none> Specifies the arrowsize attribute of edges.

-edgeattr <label,attribute,value> Give value value to attribute attribute of all edges labelled label.
This powerful option permits alternative styles for edges. For instance, the ghb edges of the di-
agrams of this document are thick purple (blueviolet) arrows thanks to the settings: -edgeattr

ghb,color,blueviolet -edgeattr ghb,penwidth,3.0 -edgeattr ghb,arrowsize,1.2. Notice that
the settings performed by the -edgeattr option override other settings. This option has no default.

Change input Those options are the same as the ones of litmus — see Sec. 4.

-names <file> Run herd only on tests whose names are listed in <file>.

-rename <file> Change test names.

-kinds <file> Change test kinds. This amonts to changing the quantifier of final conditions, with kind
Allow being exists, kind Forbid being ~exists and kind Require being forall.

-conds <file> Change the final condition of tests. This is by far the most useful of these options: in
combination with option -show prop it permits a fine grain selection of execution pictures — see
Sec. 19.

Configuration files

The syntax of configuration files is minimal: lines “key arg” are interpreted as setting the value of parame-
ter key to arg. Each parameter has a corresponding option, usually -key, except for the single letter option
-v whose parameter is verbose.

As command line option are processed left-to-right, settings from a configuration file (option -conf) can
be overridden by a later command line option. Configuration files will be used mostly for controling pictures.
Some configuration files are are present in the distribution. As an example, here is the configuration file
apoil.cfg, which can be used to display images in free mode. The configuration above is commented with
line comments that starts with “#”. The above configuration file comes handy to eye-proof model output,
even for relatively complex tests, such as IRIW+lwsyncs and IRIW+syncs:
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% herd -conf apoil.cfg -show prop -gv IRIW+lwsyncs.litmus

% herd -through invalid -conf apoil.cfg -show prop -gv IRIW+syncs.litmus

We run the two tests on top of the default model that computes, amongst others, a prop relation. The model
rejects executions with a cyclic prop. One can then see that the relation prop is acyclic for IRIW+lwsyncs

and cyclic for IRIW+syncs:

a: Wx=1

b: Rx=1

c: Ry=0

d: Wy=1

e: Ry=1

f: Rx=0

rf

ghbprop-base

po:1 lwsync ghbprop-base

fr

rf

ghb prop-base

po:3 lwsync ghbprop-base

fr
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a:

b: Rx=1

c: Ry=0

d: Wy=1

f: Rx=0

e: Ry=1

rf

prop

po:1 prop sync ghb prop-base

fr

proprf

prop ghb prop-base

po:3 prop sync ghb prop-base

prop

Notice that we used the option -through invalid in the case of IRIW+syncs as we would otherwise have
no image.

Configuration (and model) files are searched first in the current directory; then in any directory specified
by setting the shell environment variable HERDDIR; and then in herd installation directory, which is defined
while compiling herd.
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Part IV

Some examples
In the following experiment reports we describe both how we generate tests and how we run them on various
machines under various conditions.

16 Running several tests at once, changing critical parameters

In this section we describe an experiment on changing the stride (cf Sec. 2.1). This usage pattern applies to
many situations, where a series of test is compiled once and run many times under changing conditions.

We assume a directory tst-x86, that contains a series of litmus tests and an index file @all. Those
tests where produced by the diy tool (see Sec. 6). They are two thread tests that exercise various relaxed
behaviour of x86 machines. More specifically, diy is run as “diy -conf X.conf”, where X.conf is the
following configuration file

-arch X86

-name X

-safe Rfe,Fre,Wse,PodR*,PodWW,MFencedWR

-relax PodWR,[Rfi,PodRR]

-mix true

-mode critical

-size 5

-nprocs 2

As described in Sec. 10.5, diy will generate all critical cycles of size at most 5, built from the given lists
of candidate relaxations, spanning other two threads, and including at least one occurrence of PodWR,
[Rfi,PodRR] or both. In effect, as x86 machines follow the TSO model that relaxes write to read pairs, all
produced tests should a priori validate.

We test some x86-64 machine, using the following x86-64.cfg litmus configuration file:

#Machine/OS specification

os = linux

word = w64

#Test parameters

size_of_test = 1000

number_of_run = 10

memory = direct

stride = 1

The number of available logical processors is unspecified, it thus defaults to 1, leading to running one instance
of the test only (cf parameter a in Sec. 2.1)

We invoke litmus as follows, where run is a pre-existing empty directory:

% litmus -mach x86-64 -o run tst-x86/@all

The directory run now contains C-source files for the tests, as well as some additional files:

% ls run

comp.sh outs.c README.txt utils.c X000.c X002.c X004.c X006.c

Makefile outs.h run.sh utils.h X001.c X003.c X005.c

One notices a short README.txt file, two scripts to compile (com.sh) and run the tests (run.sh), and a
Makefile. We use the latter to build test executables:
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% cd run

% make -j 8

gcc -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -O2 -c outs.c

gcc -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -O2 -c utils.c

gcc -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -S X000.c

...

gcc -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -o X005.exe outs.o utils.o X005.s

gcc -Wall -std=gnu99 -fomit-frame-pointer -O2 -m64 -pthread -o X006.exe outs.o utils.o X006.s

rm X005.s X004.s X006.s X000.s X001.s X002.s X003.s

This builds the seven tests X000.exe to X006.exe. The size parameters (size_of_test = 1000 and
number_of_run = 10) are rather small, leading to fast tests:

% ./X000.exe

Test X000 Allowed

Histogram (2 states)

5000 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

5000 :>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

No

...

Condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) is NOT validated

...

Observation X000 Never 0 10000

Time X000 0.01

However, the test fails, in the sense that the relaxed outcome targeted by X000.exe is not observed, as can
be seen quite easily from the “Observation Never...” line above .

To observe the relaxed outcome, it happens it suffices to change the stride value to 2:

% ./X000.exe -st 2

Test X000 Allowed

Histogram (3 states)

21 *>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=0;

4996 :>0:EAX=1; 0:EBX=1; 1:EAX=1; 1:EBX=0;

4983 :>0:EAX=1; 0:EBX=0; 1:EAX=1; 1:EBX=1;

Ok

...

Condition exists (0:EAX=1 /\ 0:EBX=0 /\ 1:EAX=1 /\ 1:EBX=0) is validated

...

Observation X000 Sometimes 21 9979

Time X000 0.00

We easily perform a more complete experiment with the stride changing from 1 to 8, by running the
run.sh script, which transmits its command line options to all test executables:

% for i in $(seq 1 8)

> do

> sh run.sh -st $i > X.0$i

> done

Run logs are thus saved into files X.01 to X.08. The following table summarises the results:
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X.01 X.02 X.03 X.04 X.05 X.06 X.07 X.08

X000 0/10k 21/10k 0/10k 17/10k 0/10k 19/10k 2/10k 40/10k
X001 0/10k 108/10k 0/10k 77/10k 2/10k 29/10k 0/10k 29/10k
X002 0/10k 2/10k 0/10k 6/10k 0/10k 7/10k 0/10k 5/10k
X003 0/10k 4/10k 2/10k 1/10k 0/10k 5/10k 0/10k 11/10k
X004 0/10k 4/10k 0/10k 33/10k 0/10k 10/10k 0/10k 8/10k
X005 0/10k 1/10k 0/10k 0/10k 0/10k 5/10k 0/10k 4/10k
X006 0/10k 8/10k 0/10k 9/10k 0/10k 11/10k 1/10k 12/10k

For every test and stride value cells show how many times the targeted relaxed outcome was observed/total
number of outcomes. One sees that even stride value perfom better — noticeably 2, 6 and 8. Moreover
variation of the stride parameters permits the observation of the relaxed outcomes targeted by all tests.

We can perform another, similar, experiment changing the s (size_of_test) and r (number_of_run)
parameters. Notice that the respective default values of s and r are 1000 and 10, as specified in the
x86-64.cfg configuration file. We now try the following settings:

% sh run.sh -a 16 -s 10 -r 10000 > Y.01

% sh run.sh -a 16 -s 100 -r 1000 > Y.02

% sh run.sh -a 16 -s 1000 -r 100 > Y.03

% sh run.sh -a 16 -s 10000 -r 10 > Y.04

% sh run.sh -a 16 -s 100000 -r 1 > Y.05

The additional -a 16 command line option informs test executable to use 16 logical processors, hence running
8 instances of the “X” tests concurrently, as those tests all are two thread tests. This technique of flooding
the tested machine obviously yields better ressource usage and, according to our experience, favours outcome
variability.

The following table summarises the results:

Y.01 Y.02 Y.03 Y.04 Y.05

X000 2.3k/800k 602/800k 465/800k 551/800k 297/800k
X001 2.9k/800k 632/800k 774/800k 667/800k 315/800k
X002 633/800k 55/800k 5/800k 7/800k 0/800k
X003 1.2k/800k 182/800k 152/800k 390/800k 57/800k
X004 2.4k/800k 974/800k 1.5k/800k 2.4k/800k 1.6k/800k
X005 239/800k 21/800k 8/800k 0/800k 1/800k
X006 912/800k 129/800k 102/800k 143/800k 14/800k

Again, we observe all targeted relaxed outcomes. In fact, x86 relaxations are relatively easy to observe on
our 16 logical core machine.

Another test statistic of interest is efficiency, that is the number of targeted outcomes observed per
second:

Y.01 Y.02 Y.03 Y.04 Y.05

X000 285 2.2k 6.6k 9.2k 4.2k
X001 366 2.4k 13k 11k 5.2k
X002 78 212 71 140
X003 150 650 2.5k 7.8k 950
X004 288 3.7k 25k 59k 32k
X005 28 72 114 17
X006 118 461 1.7k 2.9k 280

As we can see, although the setting -s 10 -r 10000 yields the most relaxed outcomes, it may not be
considered as the most efficient. Moreover, we see that tests X002 and X005 look more challenging than
others.

Finally, it may be interesting to classify the “X” tests:
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% mcycles @all | classify -arch X86

R

X003 -> R+po+rfi-po : PodWW Wse Rfi PodRR Fre

X006 -> R : PodWW Wse PodWR Fre

SB

X000 -> SB+rfi-pos : Rfi PodRR Fre Rfi PodRR Fre

X001 -> SB+rfi-po+po : Rfi PodRR Fre PodWR Fre

X002 -> SB+mfence+rfi-po : MFencedWR Fre Rfi PodRR Fre

X004 -> SB : PodWR Fre PodWR Fre

X005 -> SB+mfence+po : MFencedWR Fre PodWR Fre

One sees that two thread non-SC tests for x86 are basically of two kinds.

17 Cross compiling, affinity experiment

In this section we describe how to produce the C sources of tests on a machine, while running the tests on
another. We also describe a sophisticated affinity experiment.

We assume a directory tst-ppc, that contains a series of litmus tests and an index file @all. Those tests
where produced by the diycross tool. They illustrate variations of the classical IRIW test. More specifically,
the IRIW variations are produced as follows (see also Sec. 8):

% mkdir tst-ppc

% diycross -name IRIW -o tst-ppc Rfe PodRR,DpAddrdR,LwSyncdRR,EieiodRR,SyncdRR Fre Rfe PodRR,DpAddrdR,LwSy

Generator produced 15 tests

We target a Power7 machine described by the configuration file power7.cfg:

#Machine/OS specification

os = linux

word = w64

smt = 4

smt_mode = seq

#Test parameters

size_of_test = 1000

number_of_run = 10

avail = 0

memory = direct

stride = 1

affinity = incr0

One may notice the SMT (Simultaneaous Multi-Threading) specification: 4-ways SMT (smt=4), logical
processors pertaining to the same core being numbered in sequence (smt_mode = seq) — that is, logical
processors from the first core are 0, 1 ,2 and 3; logical processors from the second core are 4, 5 ,6 and 7; etc.
The SMT specification is necessary to enable custom affinity mode (see Sec. 2.2.4).

One may also notice the specification of 0 available logical processors (avail=0). As affinity support is
enabled (affinity=incr0), test executables will find themselves the number of logical processors available
on the target machine.

We compile tests to C-sources packed in archive a.tar and upload the archive to the target power7
machine as follows:

% litmus -mach power7 -o a.tar tst-ppc/@all

% scp a.tar power7:

Then, on power7 we unpack the archive and produce executable tests as follows:
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power7% tar xmf a.tar

power7% make -j 8

gcc -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -O2 -c affinity.c

gcc -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -O2 -c outs.c

gcc -D_GNU_SOURCE -Wall -std=gnu99 -O -m64 -pthread -S IRIW+eieios.c

...

As a starter, we can check the effect of available logical processor detection and custom affinity control
(option +ca) by passing the command line option -v to one test executable, for instance IRIW.exe:

power7% ./IRIW.exe -v +ca

./IRIW.exe -v +ca

IRIW: n=8, r=10, s=1000, st=1, +ca, p=’0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

thread allocation:

[23,22,3,2] {5,5,0,0}

[7,6,15,14] {1,1,3,3}

[11,10,5,4] {2,2,1,1}

[21,20,27,26] {5,5,6,6}

[9,8,25,24] {2,2,6,6}

[31,30,13,12] {7,7,3,3}

[19,18,29,28] {4,4,7,7}

[1,0,17,16] {0,0,4,4}

...

We see that our machine power7 features 32 logical processors numbered from 0 to 31 (cf p=... above)
and will thus run n=8 concurrent instances of the 4 thread IRIW test. Additionally allocation of threads
to logical processors is shown: here, the four threads of the test are partitioned into two groups, which are
scheduled to run on different cores. For example, threads 0 and 1 of the first instance of the test will run on
logical processors 23 and 22 (core 5); while threads 2 and 3 will run on logical processors 3 and 2 (core 0).

Our experiment consists in running all tests with affinity increment (see Sec. 2.2.1) being from 0 and
then 1 to 8 (option -i i), as well as in random and custom affinity mode (options +ra and +ca):

power7% for i in $(seq 0 8)

> do

> sh run.sh -i $i > Z.0$i

> done

power7% sh run.sh +ra > Z.0R

power7% sh run.sh +ca > Z.0C

The following table summarises the results, with X meaning that the targeted relaxed outcome is observed:
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Z.00 Z.01 Z.02 Z.03 Z.04 Z.05 Z.06 Z.07 Z.08 Z.0C Z.0R

IRIW X X X X X X X X X
IRIW+addr+po X X X X X
IRIW+addrs X X X
IRIW+eieio+addr X X X
IRIW+eieio+po X X X
IRIW+eieios X X X X
IRIW+lwsync+addr X X X
IRIW+lwsync+eieio X X X
IRIW+lwsync+po X X X X X
IRIW+lwsyncs X X
IRIW+sync+addr X X
IRIW+sync+eieio X X
IRIW+sync+lwsync X X
IRIW+sync+po X X X X X X
IRIW+syncs

On sees that all possible relaxed outcomes shows up with proper affinity control. More precisely, setting the
affinity increment to 2 or resorting to custom affinity result in the same effect: the first two threads of the
test run on one core, while the last two threads of the test run on a different core. As demonstrated by the
experiment, this allocation of test threads to cores suffices to favour relaxed outcomes for all tests except for
IRIW+syncs, where the sync fences forbid them.

18 Cross running, testing low-end devices

Together litmus options -gcc and -linkopt permit using a C cross compiler. For instance, assume that
litmus runs on machine A and that crossgcc, a cross compiler for machine C, is available on machine B.
Then, the following sequence of commands can be used to test machine C:

A% litmus -gcc crossgcc -linkopt -static -o C-files.tar ...

A% scp C-files.tar B:

B% tar xf C-files.tar

B% make

B% tar cf /tmp/C-compiled.tar .

B% scp /tmp/C-compiled.tar C:

C% tar xf C-compiled.tar

C% sh run.sh

Alternatively, using option -crossrun C, one can avoid copying the archive C-compiled.tar to machine C:

A% litmus -crossrun C -gcc crossgcc -linkopt -static -o C-files.tar ...

A% scp C-files.tar B:

B% tar xf C-files.tar

B% make

B% sh run.sh

More specifically, option -crossrun C instructs the run.sh script to upload executables individually to
machine C, just before running them. Notice that executables are removed from C once run.

We illustrate the crossrun feature by testing LB variations on an ARM-based Tegra3 (4 cores) tablet.
Test LB (load-buffering) exercises the following “causality” loop:
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a: Rx=1

b: Wy=1

c: Ry=1

d: Wx=1

po rf po
rf

That is, thread 0 reads the values stored to location x by thread 1, thread 1 reads the values stored to
location y by thread 0, and both threads read “before” they write.

We shall consider tests with varying interpretations of “before”: the write may simply follow the read
in program order (po in test names), may depend on the read (data and addr), or they may be some fence
in-betweeen (isb and dmb). We first generate tests tst-armwith diycross:

% mkdir tst-arm

% diycross -arch ARM -name LB -o tst-arm PodRW,DpDatadW,DpCtrldW,ISBdRW,DMBdRW Rfe PodRW,DpDatadW,DpCtrldW

Generator produced 15 tests

We use the following, tegra3.cfg, configuration file:

#Tegra 3

size_of_test = 5k

number_of_run = 200

avail = 4

memory = direct

#Cross compilation

gcc = arm-linux-gnueabi-gcc

ccopts = -march=armv7-a -O2

linkopt = -static

Notice the “cross-compilation” section: the name of the gcc cross-compiler is arm-linux-gnueabi-gcc, while
the adequate version of the target ARM variant and static linking are specified.

We compile the tests from litmus source files to C source files in directory TST as follows:

% mkdir TST

% litmus -mach tegra3 -crossrun app_81@wifi-auth-188153:2222 tst-arm/@all -o TST

The extra option -crossrun app 81@wifi-auth-188153:2222 specifies the address to log onto the tablet
by ssh, which is connected on a local WiFi network and runs a ssh daemon that listens on port 2222.

We compile to executables and run them as as follows:

% cd TST

% make

arm-linux-gnueabi-gcc -Wall -std=gnu99 -march=armv7-a -O2 -pthread -O2 -c outs.c

arm-linux-gnueabi-gcc -Wall -std=gnu99 -march=armv7-a -O2 -pthread -O2 -c utils.c

arm-linux-gnueabi-gcc -Wall -std=gnu99 -march=armv7-a -O2 -pthread -S LB.c

...

% sh run.sh > ARM-LB.log

It is important to notice that the shell script run.sh runs on the local machine, not on the remote tablet.
Each test executable is copied (by using scp) to the tablet, runs there and is deleted (by using ssh), as can
be seen with sh “-x” option:

% sh -x run.sh 2>&1 >ARM-LB.log | grep -e scp -e ssh

+ scp -P 2222 -q ./LB.exe app_81@wifi-auth-188153:

+ ssh -p 2222 -q -n app_81@wifi-auth-188153 ./LB.exe -q && rm ./LB.exe
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+ scp -P 2222 -q ./LB+data+po.exe app_81@wifi-auth-188153:

+ ssh -p 2222 -q -n app_81@wifi-auth-188153 ./LB+data+po.exe -q && rm ./LB+data+po.exe

...

Experiment results can be extracted from the log file quite easily, by reading the “Observation” informa-
tion from test output:

% grep Observation ARM-LB.log

Observation LB Sometimes 1395 1998605

Observation LB+data+po Sometimes 360 1999640

Observation LB+ctrl+po Sometimes 645 1999355

Observation LB+isb+po Sometimes 1676 1998324

Observation LB+dmb+po Sometimes 18 1999982

Observation LB+datas Never 0 2000000

Observation LB+ctrl+data Never 0 2000000

Observation LB+isb+data Sometimes 654 1999346

Observation LB+dmb+data Never 0 2000000

Observation LB+ctrls Never 0 2000000

Observation LB+isb+ctrl Sometimes 1143 1998857

Observation LB+dmb+ctrl Never 0 2000000

Observation LB+isbs Sometimes 2169 1997831

Observation LB+dmb+isb Sometimes 178 1999822

Observation LB+dmbs Never 0 2000000

What is observed (Sometimes) or not (Never) is the occurence of the non-SC behaviour of tests. All tests
have the same structure and the observation of the non-SC behaviour can be interpreted as some read not
being “before” the write by the same thread. This situation occurs for plain program order (plain test LB
and po variations) and for the isb fence.

19 Finding and showing invalid executions
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Part V

Automating the testing process
The authors of dont are Jade Alglave and Luc Maranget (INRIA Paris–Rocquencourt).

20 Preamble

Following Part II, we describe our tests via cycles, built from the candidate relaxations they involve. We
consider a candidate relaxation to be relaxed, or non-global, when it corresponds to the weaknesses that can
be observed on a system implementing A. We consider a candidate relaxation to be safe, or global, when it
is guaranteed, e.g. by the documentation, never to be relaxed.

In the following, we consider an architecture A to be a pair (RelaxA, SafeA), where RelaxA (resp. SafeA)
are the candidate relaxations relaxed (resp. safe) for A. The automated front-end dont mechanises the
task of checking that a machine or executable model conforms to such an architecture, and of exploring
architectures. We provide some experiment reports elsewhere9. This document is intended to be a gentle
introduction to dont and a partial reference.

21 A tour of dont

21.1 Checking conformance

We want to check that a given machine M is conform to an architecture A. By conform, we mean that the
machine M does not exhibit more behaviours than the architecture A actually allows.

For example, let us consider an x86 machine with 2 processors. Suppose that we have been told that x86
machines are TSO, and that we want to check that. As the default values of dont options handle that very
situation, we type:

$ dont -mode conform

** Step 0 **

Phase 2 in A (6 tests)

...

Phase 2 in A (6 tests)

** Step 5 **

Safe set {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWR} is conform

The automated front-end dont, assumed the TSO safe set (the default for x86), called the diy tool (see
Part II) to generate all the tests that are forbidden by TSO — up to 2 processors; ran them (5 times) with
our companion litmus tool, (see Part I) against our x86 machine; and observed that the machine does not
exhibit any outcome forbidden by TSO. In effect, dont in conformance check mode automates the safe tests
of Sec. 6.2.

21.2 Checking non-conformance

Now, we wish to prove that an x86 machine is not sequentially consistent. To that end, we write the following
configuration file x86.sc:

#General behaviour

arch = X86

mode = conform

9http://diy.inria.fr/dont/dont/index.html
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stabilise = 1

#Cycle control

safe = Rfe,Fre,Wse,Pod**,[Rfi,PodRR]

nprocs = 2

#External tool control

litmus_opts = -a 2 -i 0

run_opts = -s 100000 -r 10,-s 5000 -r 200 -i 1

build = make -j 2 -s

Most of dont controls are set, sometimes to their default values:

• arch = X86 sets the targeted architecture, mode = conform sets conformance check mode, and stablise
= 1 commands performing the check round once (the default is five times, cf. supra).

• safe = Rfe,Fre,Wse,Pod**,[Rfi,PodRR] defines the set of safe relaxation candidates used to gener-
ate litmus tests (up to 2 processors, by nprocs = 2).

• The front-end dont calls litmus and runs the tests with the specified options. The setting litmus opt

= -a 2 -i 0 specifies that two processors are available and enables affinity control (see Sec. 4 for the
description of litmus options). Tests will be run twice per check round, once with options -s 100000 -r

10, and once with options -s 5000 -r 200 -i 1 (see Sec. 2.3 for the description of test executable
options). Finally, the setting build = make -j 2 -s specifies the command to use to compile the
C source files that litmus produces.

We run dont configured by x86.sc as follows:

$ dont x86.sc

** Step 0 **

Phase 2 in A (9 tests)

...

** Step 1 **

Safe set {[Rfi,PodRR], Rfe, Fre, Wse, PodWW, PodWR, PodRW, PodRR} is not conform

++ Invalidating tests ++

A006: ’Fre PodWR Fre PodWR’ {Fre, PodWR}

A007: ’Fre PodWW Wse PodWR’ {Fre, Wse, PodWW, PodWR}

A001: ’Rfi PodRR Fre PodWR Fre’ {[Rfi,PodRR], Fre, PodWR}

A002: ’Rfi PodRR Fre PodWW Wse’ {[Rfi,PodRR], Fre, Wse, PodWW}

A000: ’Rfi PodRR Fre Rfi PodRR Fre’ {[Rfi,PodRR], Fre}

++++++++

The conformance check failed and the tests that invalidate the hypothesis “x86 is sequentially consistent”
are listed. The check took place in directory A. Directory A contains the actual logs of litmus runs as files
A.00, A.01 etc., in addition to the sources of the litmus tests:

$cat A/A006.litmus

X86 A006

"Fre PodWR Fre PodWR"

Cycle=Fre PodWR Fre PodWR

Relax=

Safe=Fre PodWR

{ }

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EAX,[x] ;

exists (0:EAX=0 /\ 1:EAX=0)
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Notice that, since tests are described by their cycles, the source of tests can also be reconstructed with diyone:

% diyone -arch X86 Fre PodWR Fre PodWR

X86 a

"Fre PodWR Fre PodWR"

{ }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

21.3 Automatically exploring the memory model exhibited by a machine

Now suppose that we have no idea of the memory model of our 2 processors x86 machine. Another mode of our
dont tool automatically explores a given machine, and outputs an architecture (i .e. a pair (RelaxA, SafeA))
to which the machine conforms. The following configuration file x86.explo instructs dont to perform such
an exploration.

#General behaviour

arch = X86

mode = explo

#Cycle control

testing = Rfe,Pod**,MFenced**,[Rfi,PodR*]

safe = Fre,Wse

nprocs = 2

#External tool control

litmus_opts = -a 2 -i 0

run_opts = -s 100000 -r 10,-s 5000 -r 200 -i 1

build = make -j 2 -s

With respect to conformance check, new or changed settings are the selection of exploration mode by mode

= explo, the definition of the initial safe set by safe = Fre,Wse, and and the definition of the candidate
relaxations to be tested (testing = Rfe,Pod**,MFenced**,[Rfi,PodR*]).

We launch the exploration as:

$ dont x86.explo

The whole process only takes a few minutes, mostly due to the limited number of tests induced by the setting
nprocs = 2.

We now detail dont output (the html version10 of this document includes the complete log of the experi-
ence). We start by a first exploration round:

** Step 0 **

Testing: {[Rfi,PodRW], [Rfi,PodRR], Rfe, PodWW, PodWR, PodRW, PodRR, MFencedWW,

MFencedWR, MFencedRW, MFencedRR}

Relaxed: {}

Safe : {Fre, Wse}

Phase 1 in A (6 tests)

Actually tested: {[Rfi,PodRW], [Rfi,PodRR], PodWW, PodWR, MFencedWW, MFencedWR}

Added relax: {[Rfi,PodRR], PodWR}

Added safe: {[Rfi,PodRW], PodWW, MFencedWW, MFencedWR}

Phase 2 in B (6 tests)

10http://diy.inria.fr/doc/auto.html
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The log above first indicates the current status of exploration as three sets: testing, relaxed and safe. Initially,
no candidate relaxation has yet been observed to be relaxed, while the testing and safe sets are as assumed.
Each exploration round is divided in two phases. The aim of Phase 1 (performed in directory A) is to classify
some candidate relaxations as either relaxed or safe. It here succeeds for 6 candidate relaxations, whose
observed status is indicated. Phase 2 (performed in directory B) basically is a conformance check of the
current safe set. The conformance check succeeds and all safe candidate relaxations found at phase 1 make
it to the next round:

** Step 1 **

Testing: {Rfe, PodRW, PodRR, MFencedRW, MFencedRR}

Relaxed: {[Rfi,PodRR], PodWR}

Safe : {[Rfi,PodRW], Fre, Wse, PodWW, MFencedWW, MFencedWR}

Phase 1 in C (10 tests)

Actually tested: {Rfe, PodRW, PodRR, MFencedRW, MFencedRR}

Added safe: {Rfe, PodRW, PodRR, MFencedRW, MFencedRR}

Phase 2 in D (17 tests)

Phase 1 (performed in directory C) can now target new candidate relaxations, because of the increased safe
set. All of targeted candidate relaxations are observed to be safe, which is confirmed by phase 2. As a
consequence, there does not remain any candidate relaxation to be tested and the next round reduces to a
conformance check:

** Step 2 **

Testing: {}

Relaxed: {[Rfi,PodRR], PodWR}

Safe : {[Rfi,PodRW], Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}

Phase 1 in E (0 tests)

Phase 2 in D (17 tests)

The same check is performed for 4 additional rounds as governed by the default value of 5 for the setting
of stabilise. Round number 6 then shows the result of exploration, (i.e. the pair (RelaxA, SafeA)), prefixed
by the list of tests that justify observed relaxations:

** Step 6 **

...

++ Witness(es) for relaxed [Rfi,PodRR] ++

A001: ’Rfi PodRR Fre Rfi PodRR Fre’ {[Rfi,PodRR], Fre}

++++++++

++ Witness(es) for relaxed PodWR ++

A003: ’Fre PodWR Fre PodWR’ {Fre, PodWR}

++++++++

Observed relaxed: {Rfi, PodWR}

Observed safe: {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}

And we go again for 5 additional rounds of pure conformance check:

** Now checking safe set conformance **

** Step 7 **

Phase 2 in F (17 tests)

...

* Step 12 **

Observed relaxed: {Rfi, PodWR}

Observed safe: {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}
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Once exploration is complete, all litmus tests and logs of litmus runs are still present in their directories
A, B, etc. For instance, the directory F contain the 10 logs of the final conformance check, as the files F.01,
. . . , F.09:

$ ls F/F.??

F/F.00 F/F.01 F/F.02 F/F.03 F/F.04 F/F.05 F/F.06 F/F.07 F/F.08 F/F.09

The tool dont offers a convenient replay feature:

$ dont -restart

** Step 0 *

...

* Step 12 **

Observed relaxed: {Rfi, PodWR}

Observed safe: {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}

The command above takes a few seconds of time, since experiments are not run again. Instead, the logs of
litmus runs are read and their interpretation is re-performed. Notice that the restart feature also permits to
pursue interrupted experiments.

22 Usage of dont

In effect, the tool dont automates the complete testing procedure described in the documentation of diy
proper (Sec. 6). It is to be noticed that dont requires a fully functional installation of the diy tool suite. In
particular, the commands diy and litmus must be installed and runnable as “diy” and “litmus” (i.e. installed
in path).

22.1 Command-line options

The automated front-end dont is configured mostly by the means of a configuration file, which dont takes as
a command-line argument. Nevertheless, dont accepts the following, limited, set of options:

-v Be verbose, repeat to increase verbosity.

-version Show version number and exit.

-arch (X86|PPC|ARM) Set architecture. Default is X86. ARM is untested.

-mode (conform|explo) Set main mode, either conformance check or exploration. Default is explo.

-nprocs <n> Generate tests up to ¡n¿ processors (defaults: X86=2, PPC=4)

-restart Restart the experiment in hand in current directory.

Except for -restart command lines options are not intended for normal use. In particular, command-line
options do not override values defined in configuration files.

Namely, there are many parameters to set and appropriate values for them will depend on the tested ma-
chine. In particular, litmus parameters need to be chosen carefully, by the means of preliminary experiments.
For instructions on configuring litmus, refer to Sec. 2 of litmus documentation.

22.2 Configuration files

The general syntax of configurations files is a sequence of lines key = value. Comment lines are introduced
by #. The tool dont recognises the following keys:
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General behaviour

mode = (conform|explo) Main operating mode. Default is explo

arch = (X86|PPC|ARM) Target architecture. Default is X86.

run = (local|ssh <addr>|cross <addr1> <addr2>) Give access to the tested machine, which can be
either the machine where dont runs, or remote machine <addr>, or compile C files on remote machine
addr1 and execute on tests on remote machine addr2. Machine addresses are [user@]machine[:port]
expressing connection elements for both ssh and scp. Default is local.

work dir = dir Directory for temporary files, default is /var/tmp.

stabilise = <n > In conformance check mode, dont performs n rounds of conformance testing. In explo-
ration mode, dont ends the exploration after n rounds without state change. Default is 5.

interactive = <bool> In exploration mode and after n rounds without state change, dont will either
assume that the whole current testing set is safe (false), or ask the user (true) to decide for some of
the elements of this set to be safe. Default is true, i.e. ask user.

Controlling Cycle Generation

nprocs = <n > Generate cycles up to n processors. Default is 2 for x86 and 4 for Power.

diy sz = <m > Upper limit on the size of cycles of candidate relaxations. Default is 2 × n, where n is the
number of processors. With decent values of the initial candidate relaxations sets (see below), this
default commands the generation of all (critical, see Sec. 10.5) cycles that involve up to n processors.

safe = <relax-list> Define the safe set S. In exploration mode, S is the initial value of the safe set
(default Fre, Wse). In conformance mode, S is the safe set checked. Ddefault is Rfe, Fre, Wse,

PodR*, PodWW, MFencedWR for x86, and unspecified for other architectures.

testing = <relax-list> Define the tested set of candidate relaxations. The tested set is relevant only in
exploration mode. Default values are Rfe,Pod**,MFenced**,[Rfi,MFencedR*],[Rfi,PodR*] for x86
and unspecified for other architectures.

The syntax for relax-list above is a comma (or space) separated list of candidate relaxations. Candidate
relaxations are introduced by the documentation of diy (see Part II)

Control of external tools

litmus opts = <opts> Define options used by dont when it calls litmus. Default is the empty string, i.e.
use litmus defaults.

run opts = <opts1,...,optsn> Define options used for running litmus tests. Any set of litmus tests gen-
erated and compiled by dont, will be run n times, with specified options. More concretely, dont will run
the litmus tests with commands sh run.sh opts1, . . . , sh run.sh optsn. The default is the empty
string, i.e. run tests once with no option.

build = <command> Defines the command issued by dont to compile the C source files produced by lit-
mus. The default is sh comp.sh, i.e. runs the compilation script produced by litmus. An interesting
alternative is make -s -j n for concurrent compilation, with up to n concurrent tasks.
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