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diy is a tool suite for testing shared memory models. We provide three tools, litmus (Part I) for running
tests, diy (Part II) for producing tests from concise specifications, and dont (Part III) for either checking the
conformance of a machine to an architecture or exploring the memory model of a given machine automatically.
The software is written in Objective Caml1, and released as sources. The web site of diy is http://diy.

inria.fr/, authors can be contacted at diy-devel@inria.fr
This software is released under the terms of the Lesser GNU Public License.
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Part I

Running tests with litmus

Traditionally, a litmus test is a small parallel program designed to exercise the memory model of a parallel,
shared-memory, computer. Given a litmus test in assembler (X86 or Power) litmus runs the test.

Using litmus thus requires a parallel machine, which must additionally feature gcc and the pthreads

library. At the moment, litmus is a prototype and has numerous limitations (recognised instructions, limited
porting). Nevertheless, litmus should accept all tests produced by the companion diy tool and has been
successfully used on Linux, MacOS and on AIX.

The authors of litmus are Luc Maranget and Susmit Sarkar. The present litmus is inspired from a proto-
type by Thomas Braibant (INRIA Rhône-Alpes) and Francesco Zappa Nardelli (INRIA Paris-Rocquencourt).

1 A tour of litmus

1.1 A simple run

Consider the following (rather classical) classic.litmus litmus test for X86:

X86 classic

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

A litmus test source has three main sections:

1. The initial state defines the initial values of registers and memory locations. Initialisation to zero may
be omitted.

2. The code section defines the code to be run concurrently — above there are two threads. Yes we know,
our X86 assembler syntax is a mistake.

3. The final condition applies to the final values of registers and memory locations.

Run the test by:

$ litmus classic.litmus

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Results for classic.litmus %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

X86 classic

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

Generated assembler
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_litmus_P0_0_: movl $1,(%rcx)

_litmus_P0_1_: movl (%rsi),%eax

_litmus_P1_0_: movl $1,(%rsi)

_litmus_P1_0_: movl $1,(%rsi)

_litmus_P1_1_: movl (%rcx),%eax

Test classic Allowed

Histogram (4 states)

34 :>0:EAX=0; 1:EAX=0;

499911:>0:EAX=1; 1:EAX=0;

499805:>0:EAX=0; 1:EAX=1;

250 :>0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 34, Negative: 999966

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=eb447b2ffe44de821f49c40caa8e9757

Time classic 0.60

...

The litmus test is first reminded, followed by actual assembler — the machine is an AMD64, in-line address
references disappeared, registers may change, and assembler syntax is now more familiar. The test has run
one million times, producing one million final states, or outcomes for the registers EAX of threads P0 and P1.
The test run validates the condition, with 34 positive witnesses.

1.2 Cross compilation

With option -o <name.tar>, litmus does not run the test. Instead, it produces a tar archive that contains
the C sources for the test.

Consider ppc-classic.litmus, a Power version of the previous test:

PPC ppc-classic

"Fre PodWR Fre PodWR"

{

0:r2=y; 0:r4=x;

1:r2=x; 1:r4=y;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r4) | lwz r3,0(r4) ;

exists (0:r3=0 /\ 1:r3=0)

Our target machine (ppc) runs MacOS, wich we specify with the -os option:

$ litmus -o /tmp/a.tar -os mac ppc-classic.litmus

$ scp /tmp/a.tar ppc:/tmp

Then, on the remote machine ppc:

ppc$ mkdir classic && cd classic

ppc$ tar xf /tmp/a.tar

ppc$ ls

Makefile comp.sh run.sh ppc-classic.c outs.c utils.c
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Test is compiled by the shell script comp.sh (of by (Gnu) make, at user’s choice) and run by the shell script
run.sh:

$ sh comp.sh

$ sh run.sh

...

Test ppc-classic Allowed

Histogram (3 states)

3947 :>0:r3=0; 1:r3=0;

499357:>0:r3=1; 1:r3=0;

496696:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 3947, Negative: 996053

Condition exists (0:r3=0 /\ 1:r3=0) is validated

...

As we see, the condition validates also on Power. Notice that compilation produces an executable file,
ppc-classic.exe, which can be run directly, for a less verbose output.

1.3 Running several tests at once

Consider the additional test ppc-storefwd.litmus:

PPC ppc-storefwd

"DpdR Fre Rfi DpdR Fre Rfi"

{

0:r2=x; 0:r6=y;

1:r2=y; 1:r6=x;

}

P0 | P1 ;

li r1,1 | li r1,1 ;

stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) ;

xor r4,r3,r3 | xor r4,r3,r3 ;

lwzx r5,r4,r6 | lwzx r5,r4,r6 ;

exists (0:r3=1 /\ 0:r5=0 /\ 1:r3=1 /\ 1:r5=0)

To compile the two tests together, we can give two file names as arguments to litmus:

$ litmus -o /tmp/a.tar -os mac ppc-classic.litmus ppc-storefwd.litmus

Or, more conveniently, list the litmus sources in a file whose name starts with @:

$ cat @ppc

ppc-classic.litmus

ppc-storefwd.litmus

$ litmus -o /tmp/a.tar -os mac @ppc

To run the test on the remote ppc machine, the same sequence of commands as in the one test case applies:

ppc$ tar xf /tmp/a.tar && make && sh run.sh

...

Test ppc-classic Allowed
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Histogram (3 states)

4167 :>0:r3=0; 1:r3=0;

499399:>0:r3=1; 1:r3=0;

496434:>0:r3=0; 1:r3=1;

Ok

Witnesses

Positive: 4167, Negative: 995833

Condition exists (0:r3=0 /\ 1:r3=0) is validated

...

Test ppc-storefwd Allowed

Histogram (4 states)

37 :>0:r3=1; 0:r5=0; 1:r3=1; 1:r5=0;

499837:>0:r3=1; 0:r5=1; 1:r3=1; 1:r5=0;

499912:>0:r3=1; 0:r5=0; 1:r3=1; 1:r5=1;

214 :>0:r3=1; 0:r5=1; 1:r3=1; 1:r5=1;

Ok

Witnesses

Positive: 37, Negative: 999963

Condition exists (0:r3=1 /\ 0:r5=0 /\ 1:r3=1 /\ 1:r5=0) is validated

...

Now, the output of run.sh shows the result of two tests.

2 Controlling test parameters

Users can control some of testing conditions. Those impact efficiency and outcome variability.
Sometimes one looks for a particular outcome — for instance, one may seek to get the outcome 0:r3=1; 1:r3=1;

that is missing in the previous experiment for test ppc-classical. To that aim, varying test conditions
may help.

2.1 Architecture of tests

Consider a test a.litmus designed to run on t threads P0,. . . , Pt−1. The structure of the executable a.exe

that performs the experiment is as follows:

• So as to benefit from parallelism, we run n = max(1, a/t) (integer division) tests concurrently on a
machine where a cores are available.

• Each of these (identical) tests consists in repeating r times the following sequence:

– Fork t (POSIX) threads T0, . . . Tt−1 for executing P0,. . . , Pt−1. Which thread executes which
code is either fixed, or changing, controlled by the launch mode. In our experience, the launch
mode has marginal impact.

In cache mode the Tk threads are re-used. As a consequence, t threads only are forked.

– Each thread Tk executes a loop of size s. Loop iteration number i executes the code of Pk (in
fixed mode) and saves the final contents of its observed registers in some arrays indexed by i.
Furthermore, still for iteration i, memory location x is in fact an array cell.

How this array cell is accessed depends upon the memory mode. In direct mode the array cell is
accessed directly as x[i]; as a result, cells are accessed sequentially and false sharing effects are
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likely. In indirect mode the array cell is accessed by the means of a shuffled array of pointers; as
a result we observed a much greater variability of outcomes.

If the preload mode is enabled, a preliminary loop of size s reads a random subset of the memory
locations accessed by Pk. Preload have a noticeable effect.

The iterations performed by the different threads Tk may be unsynchronised, exactly synchronised
by a pthread based barrier, or approximately synchronised by specific code. Absence of synchro-
nisation may be interesting when t exceeds a. As a matter of fact, in this situation, any kind
of synchronisation leads to prohibitive running times. However, for a large value of parameter s
and small t we have observed spontaneous concurrent execution of some iterations amongst many.
Pthread based barriers are exact but they are slow and in fact offers poor synchronisation for
short code sequences. The approximate synchronisation is thus the preferred technique.

– Wait for the t threads to terminate and collect outcomes in some histogram like structure.

• Wait for the n tests to terminate and sum their histograms.

Hence, running a.exe produces n × r × s outcomes. Parameters n, a, r and s can first be set di-
rectly while invoking a.exe, using the appropriate command line options. For instance, assuming t = 2,
./a.exe -a 201 -r 10000 -s 1 and ./a.exe -n 1 -r 1 -s 1000000 will both produce one million out-
comes, but the latter is probably more efficient. If our machine has 8 cores, ./a.exe -a 8 -r 1 -s 1000000

will yield 4 millions outcomes, in a time that we hope not to exceed too much the one experienced
with ./a.exe -n 1. Also observe that the memory allocated is roughly proportional to n × s, while the
number of Tk threads created will be t × n × r (t × n in cache mode). The run.sh shell script transmits its
command line to all the executable (.exe) files it invokes, thereby providing a convenient means to control
testing condition for several tests. Satisfactory test parameters are found by experimenting and the control
of executable files by command line options is designed for that purpose.

Once satisfactory parameters are found, it is a nuisance to repeat them for every experiment. Thus,
parameters a, r and s can also be set while invoking litmus, with the same command line options. In fact
those settings command the default values of .exe files controls. Additionally, the synchronisation technique
for iterations, the memory mode, and several others compile time parameters can be selected by appropriate
litmus command line options. Finally, users can record frequently used parameters in configuration files.

2.2 Affinity

We view affinity as a scheduler property that binds a (software, POSIX) thread to a given (hardware)
logical processor. In the most simple situation a logical processor is a core. However in the presence of
hyperthreading (x86) or simultaneous multi threading (SMT, Power) a given core can host several logical
processors.

2.2.1 Introduction to affinity

In our experience, binding the threads of test programs to selected logical processors yields sigificant speedups
and, more importantly, greater outcome variety. We illustrate the issue by the means of an example.

We consider the test ppc-iriw-lwsync.litmus:

PPC ppc-iriw-lwsync

{

1:r2=x; 3:r2=y;

0:r2=y; 0:r4=x; 2:r2=x; 2:r4=y;

}

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwsync | stw r1,0(r2) | lwsync | stw r1,0(r2) ;
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lwz r3,0(r4) | | lwz r3,0(r4) | ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0)

The test consists of four threads. There are two writers (P1 and P3) that write the value one into two different
locations (x and y), and two readers that read the contents of x and y in different orders — P0 reads y first,
while P2 reads x first. The load instructions lwz in reader threads are separated by a lightweight barrier
instruction lwsync. The final condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) characterises
the situation where the reader threads see the writes by P1 and P3 in opposite order. The corresponding
outcome 0:r1=1; 0:r3=0; 2:r1=1; 2:r3=0; is the only non-sequential consistent (non-SC, see Part II)
possible outcome. By any reasonable memory model for Power, one expects the condition to validate, i.e.

the non-SC outcome to show up.
The tested machine vargas is a Power 6 featuring 32 cores (i.e. 64 logical processors, since SMT is

enabled) and running AIX in 64 bits mode. So as not to disturb other users, we run only one instance of
the test, thus specifying four available processors. The litmus tool is absent on vargas. All these conditions
command the following invocation of litmus, performed on our local machine:

$ litmus -r 1000 -s 1000 -a 4 -os aix -ws w64 ppc-iriw-lwsync.litmus -o ppc.tar

$ scp ppc.tar vargas:/var/tmp

On vargas we unpack the archive and compile the test:

vargas$ tar xf /var/tmp/ppc.tar && sh comp.sh

Then we run the test:

vargas$ ./ppc-iriw-lwsync.exe -v

Test ppc-iriw-lwsync Allowed

Histogram (15 states)

152885:>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=0;

35214 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=0;

42419 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=0;

95457 :>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=0;

35899 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=0;

70460 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=0;

30449 :>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=0;

42885 :>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=1;

70068 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=1;

1 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=1;

41722 :>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=1;

95857 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=1;

30916 :>0:r1=1; 0:r3=0; 2:r1=1; 2:r3=1;

40818 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=1;

214950:>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is NOT validated

Hash=8ce05c9f86d49b2adfd5546bd471aa44

Time ppc-iriw-lwsync 1.33

The non-SC outcome does not show up.
Altering parameters may yield this outcome. In particular, we may try using all the available logical

processors with option -a 64. Affinity control offers an alternative, which is enabled at compilation time
with litmus option -affinity:
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$ litmus ... -affinity incr1 ppc-iriw-lwsync.litmus -o ppc.tar

$ scp ppc.tar vargas:/var/tmp

Option -affinity takes one argument (incr1 above) that specifies the increment used while allocating
logical processors to test threads. Here, the (POSIX) threads created by the test (named T0, T1, T2 and T3

in Sec. 2.1) will get bound to logical processors 0, 1, 2, and 3, respectively.
Namely, by default, the logical processors are ordered as the sequence 0, 1, . . . , A − 1 — where A is

the number of available logical processors, which is inferred by the test executable2. Furthermore, logical
processors are allocated to threads by applying the affinity increment while scanning the logical processor
sequence. Observe that since the launch mode is changing (the default) threads Tk correspond to different
test threads Pi at each run. The unpack compile and run sequence on vargas now yields the non-SC
outcome, better outcome variety and a lower running time:

vargas$ tar xf /var/tmp/ppc.tar && sh comp.sh

vargas$ ./ppc-iriw-lwsync.exe

Test ppc-iriw-lwsync Allowed

Histogram (16 states)

166595:>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=0;

2841 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=0;

19581 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=0;

86307 :>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=0;

3268 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=0;

9 :>0:r1=1; 0:r3=0; 2:r1=1; 2:r3=0;

21876 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=0;

79354 :>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=0;

21406 :>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=1;

26808 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=1;

1762 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=1;

100381:>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=1;

83005 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=1;

72241 :>0:r1=1; 0:r3=0; 2:r1=1; 2:r3=1;

98047 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=1;

216519:>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=1;

Ok

Witnesses

Positive: 9, Negative: 999991

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is validated

Hash=8ce05c9f86d49b2adfd5546bd471aa44

Time ppc-iriw-lwsync 0.67

One may change the affinity increment with the command line option -i of executable files. For instance,
one binds the test threads to logical processors 0, 2, 4 and 6 as follows:

vargas$ ./ppc-iriw-lwsync.exe -i 2

Test ppc-iriw-lwsync Allowed

Histogram (15 states)

163114:>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=0;

38867 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=0;

48395 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=0;

81191 :>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=0;

2Parameter A is not to be confused with a of section 2.1. The former serves to compute logical threads while the latter

governs the number of tests that run simultaneously.
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38912 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=0;

70574 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=0;

30918 :>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=0;

47846 :>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=1;

69048 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=1;

5 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=1;

42675 :>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=1;

82308 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=1;

30264 :>0:r1=1; 0:r3=0; 2:r1=1; 2:r3=1;

43796 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=1;

212087:>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is NOT validated

Hash=8ce05c9f86d49b2adfd5546bd471aa44

Time ppc-iriw-lwsync 0.89

One observe that the non-SC outcome does not show up with the new affinity setting.

2.2.2 Study of affinity

As illustrated by the previous example, both the running time and the outcomes of a test are sensitive to
affinity settings. We measured running time for increasing values of the affinity increment from 0 (which
disables affinity control) to 20, producing the following figure:
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As regards outcome variety, we get all of the 16 possible outcomes only for an affinity increment of 1.
The differences in running times can be explained by reference to the mapping of logical processors to

hardware. The machine vargas consists in four MCM’s (Multi-Chip-Module), each MCM consists in four
“chips”, each chip consists in two cores, and each core may support two logical processors. As far as we
know, by querying vargaswith the AIX commands lsattr, bindprocessor and llstat, the MCM’s hold the
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logical processors 0–15, 16–31, 32–47 and 48–63, each chip holds the logical processors 4k, 4k+1, 4k+2, 4k+3
and each core holds the logical processors 2k, 2k + 1.

The measure of running times for varying increments reveals two noticeable slowdowns: from an increment
of 1 to an increment of 2 and from 5 to 6. The gap between 1 and 2 reveals the benefits of SMT for our
testing application. An increment of 1 yields both the greatest outcome variety and the minimal running
time. The other gap may perhaps be explained by reference to MCM’s: for a value of 5 the tests runs on the
logical processors 0, 5, 10, 15, all belonging to the same MCM; while the next affinity increment of 6 results
in running the test on two different MCM (0, 6, 12 on the one hand and 18 on the other).

As a conclusion, affinity control provides users with a certain level of control over thread placement,
which is likely to yield faster tests when threads are constrained to run on logical processors that are “close”
one to another. The best results are obtained when SMT is effectively enforced. However, affinity control
is no panacea, and the memory system may be stressed by other means, such as, for instance, allocating
important chunks of memory (option -s).

2.2.3 Advanced control

For specific experiments, the technique of allocating logical processors sequentially by following a fixed
increment may be two rigid. litmus offers a finer control on affinity by allowing users to supply the logical
processors sequence. Notice that most users will probably not need this advanced feature.

Anyhow, so as to confirm that testing ppc-iriw-lwsync benefits from not crossing chip boundaries, one
may wish to confine its four threads to logical processors 16 to 19, that is to the first chip of the second
MCM. This can be done by overriding the default logical processors sequence by an user supplied one given
as an argument to command-line option -p:

vargas$ ./ppc-iriw-lwsync.exe -p 16,17,18,19 -i 1

Test ppc-iriw-lwsync Allowed

Histogram (16 states)

186125:>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=0;

1333 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=0;

16334 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=0;

83954 :>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=0;

1573 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=0;

9 :>0:r1=1; 0:r3=0; 2:r1=1; 2:r3=0;

19822 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=0;

72876 :>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=0;

20526 :>0:r1=0; 0:r3=0; 2:r1=0; 2:r3=1;

24835 :>0:r1=1; 0:r3=0; 2:r1=0; 2:r3=1;

1323 :>0:r1=0; 0:r3=1; 2:r1=0; 2:r3=1;

97756 :>0:r1=1; 0:r3=1; 2:r1=0; 2:r3=1;

78809 :>0:r1=0; 0:r3=0; 2:r1=1; 2:r3=1;

67206 :>0:r1=1; 0:r3=0; 2:r1=1; 2:r3=1;

94934 :>0:r1=0; 0:r3=1; 2:r1=1; 2:r3=1;

232585:>0:r1=1; 0:r3=1; 2:r1=1; 2:r3=1;

Ok

Witnesses

Positive: 9, Negative: 999991

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is validated

Hash=8ce05c9f86d49b2adfd5546bd471aa44

Time ppc-iriw-lwsync 0.66

Thus we get results similar to the previous experiment on logical processors 0 to 3 (option -i 1 alone).
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We may also run four simultaneous instances (-n 4, parameter n of section 2.1) of the test on the four
available MCM’s:

vargas$ ./ppc-iriw-lwsync.exe -p 0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51 -n 4 -i 1

Test ppc-iriw-lwsync Allowed

Histogram (16 states)

...

Witnesses

Positive: 80, Negative: 3999920

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is validated

Time ppc-iriw-lwsync 0.74

Obzserve that, for a negligible penalty in running time, the number of non-SC outcomes increases signifi-
cantly.

By contrast, binding threads of a given instance of the test to different MCM’s results in poor running
time and no non-SC outcome.

vargas$ ./ppc-iriw-lwsync.exe -p 0,1,2,3,16,17,18,19,32,33,34,35,48,49,50,51 -n 4 -i 4

Test ppc-iriw-lwsync Allowed

Histogram (15 states)

...

Witnesses

Positive: 0, Negative: 4000000

Condition exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0) is NOT validated

Time ppc-iriw-lwsync 1.48

In the experiement above, the increment is 4, hence the logical processors allocated to the first instance of
the test are 0, 16, 32, 48, of which indices in the logical processors sequence are 0, 4, 8, 12, respectively. The
next allocated index in the sequence is 12 + 4 = 16. However, the sequence has 16 items. Wrapping around
yields index 0 which happens to be the same as the starting index. Then, so as to allocate fresh processors,
the starting index is incremented by one, resulting in allocating processors 1, 17, 33, 49 (indices 1, 5, 9, 13)
to the second instance — see section 2.3 for the full story. Similarily, the third and fourth instances will
get processors 2, 18, 34, 50 and 3, 19, 35, 51, respectively. Attentive readers may have noticed that the same
experiment can be performed with option -i 16 and no -p option.

Finally, users should probably be aware that at least some versions of linux for x86 feature a less obvious
mapping of logical processors to hardware. On a bi-processor, dual-core, 2-ways hyperthreading, linux,
AMD64 machine, we have checked that logical processors residing on the same core are k and k + 4, where
k is an arbitray core number ranging from 0 to 3. As a result, a proper choice for favouring effective
hyperthreading on such a machine is -i 4 (or -p 0,4,1,5,2,6,3,7 -i 1). More worthwhile noticing,
perhaps, the straightforward choice -i 1 disfavours effective hyperthreading. . .

2.3 Controlling executable files

Test conditions Any executable file produced by litmus accepts the following command line options.

-v Be verbose, can be repeated to increase verbosity. Specifying -v is a convenient way to look at the default
of options.

-q Be quiet.

-a <n> Run maximal number of tests concurrently for n available cores — parameter a in Sec. 2.1.

-n <n> Run n tests concurrently — parameter n in Sec. 2.1.
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-r <n> Perform n runs — parameter r in Sec. 2.1.

-fr <f> Multiply r by f (f is a floating point number).

-s <n> Size of a run — parameter s in Sec. 2.1.

-fs <f> Multiply s by f .

-f <f> Multiply s by f and divide r by f .

Affinity If affinity control has been enabled at compilation time (by supplying option -affinity incr1 to
litmus, for instance), the executable file produced by litmus accepts the following two command line options.

-p <ns> Logical processors sequence. The sequence <ns> is a comma separated list of integers, The default
sequence is infered by the executable as 0, 1, . . . , A − 1, where A is the number of logical processors
featured by the tested machine; or is a sequence specified at compile time with litmus option -p.

-i <n> Increment for allocating logical processors to threads. Default is specified at compile time by litmus

option -affinity incr<n>. Notice that -i 0 disable affinity control and that .exe files reject the -i

option when affinity control has not been enabled at compile time.

Logical processors are allocated test instance by test instance (parameter n of Sec. 2.1) and then thread by
thread, scanning the logical processor sequence left-to-right by steps of the given increment. More precisely,
assume a logical processor sequence P = p0, p1, . . . , pA−1 and an increment i. The first processor allocated
is p0, then pi, then p2i etc, Indices in the sequence P are reduced modulo A so as to wrap around. The
starting index of the allocation sequence (initially 0) is recorded, and coincidence with the index of the next
processor to be allocated is checked. When coincidence occurs, a new index is computed, as the previous
starting index plus one, which also becomes the new starting index. Allocation then proceeds from this new
starting index. That way, all the processors in the sequence will get allocated to different threads naturally,
provided of course that less than A threads are scheduled to run. See section 2.2.3 for an example with
A = 16 and i = 4.

3 Usage of litmus

Arguments

litmus takes file names as command line arguments. Those files are either a single litmus test, when having
extension .litmus, or a list of file names, when prefixed by @. Of course, the file names in @files can
themselves be @files.

Options

There are many command line options. We describe the more useful ones:

General behaviour

-version Show version number and exit.

-libdir Show installation directory and exit.

-v Be verbose, can be repeated to increase verbosity.

-mach <name> Read configuration file name.cfg. See the next section for the syntax of configuration files.

-o <name.tar> Cross compile tests into tar file name.tar.

-index <@name> Save the source names of compiled files in index file @name.
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Test conditions The following options set the default values of the options of the executable files produced:

-a <n> Run maximal number of tests concurrently for n available cores — set default value for -a of Sec. 2.3.
Default is 0 (run one test).

-limit <bool> Do not process tests with more than n threads, where n is the number of available cores
defined above. Default is false.

-r <n> Perform n runs — set default value for option -r of Sec. 2.3. Default is 10.

-s <n> Size of a run — set default value for option -s of Sec. 2.3. Default is 100000.

The following two options enable affinity control. Affnity control is not implemeted for MacOs.

-affinity (none|incr<n>) Step for allocating logical processors to threads — set default value for option
-i of Sec. 2.3. Default is none, .i.e. produced code does not feature affinity control. With -affinity

incr0, produced code features affinity control, which executable files do not exercise by default.

-i <n> Alias for -affinity incr<n>.

-p <ns> Specify the sequence of logical processors, implies -affinity incr1. The notation <ns> stands
for a comma separated list of integers. Set default value for option -p of Sec. 2.3.

Default for this -p option will let executable files compute the logical processor sequence themselves.

The following additional options control the various modes described in Sec. 2.1. Those cannot be changed
without running litmus again:

-barrier (user|pthread|none) Set synchronisation mode, default user.

-launch (changing|fixed) Set launch mode, default changing.

-cache <bool> Enable or disable cache mode, default disabled.

-mem (indirect|direct) Set memory mode, default indirect.

-para (self|shell) Perform several tests concurrently, either by forking POSIX threads (as described in
Sec. 2.1), or by forking Unix processes. Only applies for cross compilation. Default is self.

-prealloc <bool> Enable or disable pre-allocation mode, default disabled. In pre-allocation mode, memory
is allocated before forking any thread.

-preload <bool> Enable or disable preload, default enabled.

-safer <bool> Enable or disable safer mode, default enabled. In safer mode, executable files perform
some consistency checks. Those are intended both for debugging and for dynamically checking some
assumption on POSIX threads that we rely upon.

-speedcheck <bool> Enable or disable quick condition check mode, default enabled. When enabled, stop
test as soon as condition is settled.

-ccopts <flags> Set additional gcc compilation flags (defaults: X86="-fomit-frame-pointer -O2", PPC="-O").
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Target architecture description Litmus compilation chain may slightly vary depending on the following
parameters:

-os (linux|mac|aix) Set target operating system. This parameter mostly impacts some of gcc options.
Default linux.

-ws (w32|w64) Set word size. This option first selects gcc 32 or 64 bits mode, by providing it with the
appropriate option (-m32 or -m64 on linux, -maix32 or -maix64 on AIX). It also slightly impacts code
generation in the corner case where memory locations hold other memory locations. Default is a bit
contrived: it acts as w32 as regards code generation, while it provides no 32/64 bits mode selection
option to gcc.

Configuration files

The syntax of configuration files is minimal: lines “key = arg” are interpreted as setting the value of param-
eter key to arg. Each parameter has a corresponding option, usually -key, except for single-letter options:

option key arg

-a avail integer
-s size of test integer
-r number of run integer
-p procs list of integers

As command line option are processed left-to-right, settings from a configuration file (option -mach) can
be overridden by a later command line option. Some configuration files for the machines we have tested are
present in the distribution. As an example here is the configuration file hpcx.cfg.

size_of_test = 2000

number_of_run = 20000

os = AIX

ws = W32

# A node has 16 cores X2 (SMT)

avail = 32

Lines introduced by # are comments and are thus ignored.
Configuration files are searched first in the current directory; then in any directory specified by setting

the shell environment variable LITMUSDIR; and then in litmus installation directory, which is defined while
compiling litmus.
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Part II

Generating tests

The authors of diy are Jade Alglave and Luc Maranget (INRIA Paris–Rocquencourt).

4 Preamble

We wrote diy as part of our empirical approach to studying relaxed memory models: developing in tan-
dem testing tools and models of multiprocessor behaviour. In this tutorial, we attempt an independent
tool presentation. Readers interested by the companion formalism are invited to refer to our CAV 2010
publication [1].

4.1 Relaxation of Sequential Consistency

Relaxation is one of the key concepts behind simple analysis of weak memory models. We define a candi-
date relaxation by reference to the most natural model of parallel execution in shared memory: Sequential
Consistency (SC), as defined by L. Lamport [3]. A parallel program running on a sequentially consistent
machine behaves as an interleaving of its sequential threads.

Consider once more the example classic.litmus:

X86 classic

"Fre PodWR Fre PodWR"

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ; #(a)Wy1 | (c)Wx1

MOV EAX,[x] | MOV EAX,[y] ; #(b)Rx0 | (d)Ry0

exists (0:EAX=0 /\ 1:EAX=0)

To focus on interaction through shared memory, let us consider memory accesses, or memory events. A
memory event will hold a direction (write, written W, or read, written R), a memory location (written x, y)
a value and a unique label. In any run of the simple example above, four memory events occur: two writes
(c)Wx1 and (a)Wy1 and two reads (b)Rxv1 with a certain value v1 and (d) Ryv2 with a certain value v2.

If the program’s behaviour is modelled by the interleaving of its events, the first event must be a write
of value 1 to location x or y and at least one of the loads must see a 1. Thus, a SC machine would exhibit
only three possible outcomes for this test:

Allowed: 0:EAX = 0 ∧ 1:EAX = 1
Allowed: 0:EAX = 1 ∧ 1:EAX = 0
Allowed: 0:EAX = 1 ∧ 1:EAX = 1

However, running (see Sec. 1.1) this test on a x86 machine yields an additional result:

Allowed: 0:EAX = 0 ∧ 1:EAX = 0

And indeed, x86 allows each write-read pair on both processors to be reordered [2]: thus the write-read
pair in program order is relaxed on each of these architectures. We cannot use SC as an accurate memory
model for modern architectures. Instead we analyse memory models as relaxing the ordering constraints of
the SC memory model.
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4.2 Introduction to candidate relaxations

Consider again our classical example, from a SC perspective. We briefly argued that the outcome “0:EAX
= 0 ∧ 1:EAX = 0” is forbidden by SC. We now present a more complete reasoning:

• From the condition on outcome, we get the values in read events: (b)Rx0 and (d)Ry0.

• Because of these values, (b)Rx0 must precede the write (c) Wx1 in the final interleaving of SC. Similarly,

(d)Ry0 must precede the write (a) Wy1. This we note (b)
fr
→ (c) and (d)

fr
→ (a).

• Because of sequential execution order on one single processor (a.k.a. program order), (a) Wy1 must
precede (b)Rx0 (first processor); while (c)Wx1 must precede (d) Ry0 (second processor). This we note

(a)
po
→ (b) and (c)

po
→ (d).

• We synthesise the four constraints above as the following graph:

(a) Wy1

(b) Rx0

(c) Wx1

(d) Ry0

po rf

fr

porf

fr

rf

rf

Constraint arrows or global arrows are shown in brown colour. As the graph contains a cycle of brown
arrows, the events cannot be ordered. Hence the execution presented is not allowed by SC.

The key idea of diy resides in producing programs from similar cycles. To that aim, the edges in cycles
must convey additional information:

• For
po
→ edges, we consider whether the locations of the events on both sides of the edge are the same

or not (’s’ or ’d’); and the direction of these events (W or R). For instance the two
po
→ edges in the

example are PodWR. (program order edge between a write and a read whose locations are different).

• For
fr
→ edges, we consider whether the processor of the events on both sides of the edge are the same

or not (’i’ for internal, or ’e’ for external). For instance the two
fr
→ edges in the example are Fre.

So far so good, but our x86 machine produced the outcome 0:EAX=0 ∧ 1:EAX=0. The Intel Memory
Ordering White Paper [2] specifies: “Loads may be reordered with older stores to different locations”, which
we rephrase as: PodWR is relaxed. Considering Fre to be safe, we have the graph:
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(a)Wy1

(b)Rx0

(c)Wx1

(d)Ry0

PodWR Rf

Fre

PodWRRf

Fre

Rf

Rf

And the brown sub-graph becomes acyclic.
We shall see later why we choose to relax PodWR and not Fre. At the moment, we observe that we can

assume PodWR to be relaxed and Fre not to be (i.e. to be safe) and test our assumptions, by producing
and running more litmus tests. The diy suite precisely provides tools for this approach.

As a first example, classic.litmus can be created as follows:

% diyone -arch X86 -name classic Fre PodWR Fre PodWR

As a second example, we can produce several similar tests as follows:

% diy -arch X86 -safe Fre -relax PodWR -name classic

Generator produced 2 tests

Relaxations tested: {PodWR}

diy produces two litmus tests, classical000.litmus and classical001.litmus, plus one index file @all.
One of the litmus tests generated is the same as above, while the new test is:

% cat classic001.litmus

X86 classic001

"Fre PodWR Fre PodWR Fre PodWR"

Cycle=Fre PodWR Fre PodWR Fre PodWR

Relax=PodWR

Safe=Fre

{ }

P0 | P1 | P2 ;

MOV [z],$1 | MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[x] | MOV EAX,[y] | MOV EAX,[z] ;

exists (0:EAX=0 /\ 1:EAX=0 /\ 2:EAX=0)

% cat @all

# diy -arch X86 -safe Fre -relax PodWR -name classic

# Revision: 3333

classic000.litmus

classic001.litmus

diy first generates cycles from the candidate relaxations given as arguments, up to a limited size, and
then generates litmus tests from these cycles.

4.3 More candidate relaxations

We assume the memory to be coherent. Coherence implies that, in a given execution, the writes to a given
location are performed by following a sequence, or coherence order, and that all processors see the same
sequence.
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In diy, the coherence orders are specified indirectly. For instance, the candidate relaxation Wse (resp.
Wsi) specifies two writes, performed by different processors (resp. the same processor), to the same location ℓ,
the first write preceding the second in the coherence order of ℓ. The condition of the produced test then
selects the specified coherence orders. Consider for instance:

% diyone -arch X86 -name ws Wse PodWW Wse PodWW

The cycle that reveals a violation of the SC memory model is:

(a) Wy2

(b) Wx1

(c) Wx2

(d) Wy1

PodWWrf

Wse

PodWWrf

Wse

So the coherence order is 0 (initial store, not depicted), 1, 2 for both locations x and y. While the produced
test is:

X86 ws "Wse PodWW Wse PodWW"

{ }

P0 | P1 ;

MOV [y],$2 | MOV [x],$2 ;

MOV [x],$1 | MOV [y],$1 ;

exists (x=2 /\ y=2)

By the coherence hypothesis, checking the final value of locations suffices to characterise those two coherence
orders, as expressed by the final condition of ws:

exists (x=2 /\ y=2)

See Sec. 7 for alternative means to identify coherence orders.
Candidate relaxations Rfe and Rfi relate writes to reads that load their value. We are now equipped to

generate the famous iriw test (independent reads of independent writes):

% diyone -arch X86 Rfe PodRR Fre Rfe PodRR Fre -name iriw

We generate its internal variation (i.e. where all Rfe are replaced by Rfi) as easily:

% diyone -arch X86 Rfi PodRR Fre Rfi PodRR Fre -name iriw-internal

We get the cycles of Fig. 1, and the litmus tests of Fig. 2.
Candidate relaxations given as arguments really are a “concise specification”. As an example, we get

iriw for Power, simply by changing -arch X86 into -arch PPC.

% diyone -arch PPC Rfe PodRR Fre Rfe PodRR Fre

PPC a

"Rfe PodRR Fre Rfe PodRR Fre"

{
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Figure 1: Cycles for iriw and iriw-internal

(a) Ry1

(b) Rx0

(c) Wx1

(d) Rx1

(e) Ry0

(f) Wy1

PodRR

Fre

Rferf

PodRR

Fre

Rfe

rf

rf

rf

(a) Wx1

(b) Rx1

(c) Ry0

(d) Wy1

(e) Ry1

(f) Rx0

Rfi rf

PodRR

Fre

Rfirf

PodRR

Fre

rf

rf

Figure 2: Litmus tests iriw and iriw-internal

X86 iriw

"Rfe PodRR Fre Rfe PodRR Fre"

{ }

P0 | P1 | P2 | P3 ;

MOV EAX,[y] | MOV [x],$1 | MOV EAX,[x] | MOV [y],$1 ;

MOV EBX,[x] | | MOV EBX,[y] | ;

exists (0:EAX=1 /\ 0:EBX=0 /\ 2:EAX=1 /\ 2:EBX=0)

X86 iriw-internal

"Rfi PodRR Fre Rfi PodRR Fre"

{ }

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

MOV EBX,[y] | MOV EBX,[x] ;

exists

(0:EAX=1 /\ 0:EBX=0 /\

1:EAX=1 /\ 1:EBX=0)
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0:r2=y; 0:r4=x;

1:r2=x;

2:r2=x; 2:r4=y;

3:r2=y;

}

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwz r3,0(r4) | stw r1,0(r2) | lwz r3,0(r4) | stw r1,0(r2) ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0)

Also notice that without the -name option, diyone writes its result to standard output.

4.4 Summary of simple candidate relaxations

We summarise the candidate relaxations available on all architectures.

4.4.1 Communication candidate relaxations

We call communication candidate relaxations the relations between two events communicating through
memory, though they could belong to the same processor. Thus, these events operate on the same memory
location.

diy syntax Source Target Processor Additional property
Rfi W R Same Target reads its value from source
Rfe W R Different Target reads its value from source
Wsi W W Same Source precedes target in coherence order
Wse W W Different Source precedes target in coherence order
Fri R W Same Source reads a value from a write that pre-

cedes target in coherence order
Fre R W Different Source reads a value from a write that pre-

cedes target in coherence order

4.4.2 Program order candidate relaxations

We call program order candidate relaxations each relation between two events in the program order. These
events are on the same processor, since they are in program order. As regards code output, diy interprets
a program order candidate relaxation by generating two memory instructions (load or store) following one
another.

Program order candidate relaxations have the following syntax:

Po(s|d)(R|W)(R|W)

where:

• s (resp. d) indicates that the two events are to the same (resp. different) location(s);

• R (resp. W) indicates an event to be a read (resp. a write);

In practice, we have:
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diy syntax Source Target Location
PosRR R R Same
PodRR R R Diff
PosRW R W Same
PodRW R W Diff
PosWW W W Same
PodWW W W Diff
PosWR W R Same
PodWR W R Diff

It is to be noticed that PosWR, PosWW and PosRW are similar to Rfi, Wsi and Fri, respectively. More
precisely, diy is unable to consider a PosWR (or PosWW, or PosRW) candidate relaxation as not being also
a Rfi (or Wsi, or Fri) candidate relaxation. However, litmus tests conditions may be more informative in the
case of Rfi and Fri.

4.4.3 Fence candidate relaxations

Relaxed architectures provide specific instructions, namely barriers or fences, to enforce order of memory
accesses. In diy the presence of a fence instruction is specified with fence candidate relaxations, similar to
program order candidate relaxations, except that a fence instruction is inserted. Hence we have FencedsRR,
FenceddRR. etc. The inserted fence is the strongest fence provided by the architecture — that is, mfence
for x86 and sync for Power.

Fences can also be specified by using specific names. More precisely, we have MFence for x86; while on
Power we have Sync and LwSync. Hence, to yield two reads to different locations and separated by the
lightweight Power barrier lwsync, we specify LwSyncdRR.

5 Testing candidate relaxations with diy

Teh tool diy can probably be used in various, creative, ways; but the tool first stems from our technique for
testing relaxed memory models. The -safe and -relax options are crucial here. We describe our technique
by the means of an example: X86-TSO.

5.1 Principle

Before engaging in testing it is important to categorise candidate relaxations as safe or relaxed.
This can done by interpretation of vendor’s documentation. For instance, the iriw test of Sec. 4.3 is the

example 7.7 of [2] “Stores Are Seen in a Consistent Order by Other Processors”, with a Forbid specification.
Hence we deduce that Fre, Rfe and PodRR are safe. Then, from test iriw-internal of Sec. 4.3, which is Intel’s
test 7.5 “Intra-Processor Forwarding Is Allowed” with an allow specification, we deduce that Rfi is relaxed.
Namely, the cycle of iriw-internal is “Fre Rfi PodRR Fre Rfi PodRR”. Therefore, the only possibility is for
Rfi to be relaxed.

Overall, we deduce:

• Candidate relaxations PosWR (Rfi) and PodWR are relaxed

• The remaining candidate relaxations PosRR, PodRR, PosWW (Wsi), PodWW, PosRW (Fri), Fre and
Wse are safe. Fence relaxations FencedsWR and FenceddWR are also safe and worth testing.

Of course these remain assumptions to be tested. To do so, we perform one series of tests per relaxed
candiate relaxation, and one series of tests for confirming safe candidate relaxations as much as possible.
Let S be all safe candidate relaxations.
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• Let r be a relaxed candidate relaxation. We produce tests for confirming r being relaxed by diy

-relax r -safe S. We run these tests with litmus. If one of the tests yields Ok, then r is confirmed to
be relaxed, provided the experiments on S below do not fail.

• For confirming the safe set, we produce tests by diy -safe S. We run these tests as much as possible
and expect never to see Ok.

Namely, diy builds cycles as follows:

• diy -relax r -safe S build cycles with at least one r taking other candidate relaxations from S.

• diy -safe S build cycles from the candidate relaxations in S.

For the purpose of confirming relaxed candidate relaxations, S can be replaced by a subset.

5.2 Testing x86

Repeating command line options is painful and error prone. Besides, configuration parameters may get lost.
Thus, we regroup those in configuration files that simply list the options to be passed to diy, one option per
line. For instance here is the configuration file for testing the safe relaxations of x86, x86-safe.conf.

#safe x86 conf file

-arch X86

#Generate tests on four processors or less

-nprocs 4

#From cycles of size at most six

-size 6

#With names safe000, safe0001,...

-name safe

#List of safe relaxations

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FencedsWR FenceddWR

Observe that the syntax of candidate relaxations allows one shortcut: the wildcard * stands for W and R.
Thus PodR* gets expanded to the two candidate relaxations PodRR and PodRW.

We get safe tests by issuing the following command, preferably in a specific directory, say safe.

% diy -conf x86-safe.conf

Generator produced 38 tests

Relaxations tested: {}

Here are the configuration files for confirming that Rfi and PodWR are relaxed, x86-rfi.conf and x86-podwr.conf.

#rfi x86 conf file

-arch X86

-nprocs 4

-size 6

-name rfi

-safe PosR* PodR* PodWW PosWW Rfe Wse Fre FencedsWR FenceddWR

-relax Rfi

#podrw x86 conf file

-arch X86

-nprocs 4

-size 6

-name podwr

-safe Fre

-relax PodWR

Notice that we used the complete safe list in x86-rfi.conf and a reduced list in x86-podwr.conf. Tests
are to be generated in specific directories.
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% cd rfi

% diy -conf x86-rfi.conf

Generator produced 11 tests

Relaxations tested: {Rfi}

% cd ../podwr

% diy -conf x86-podwr.conf

Generator produced 2 tests

Relaxations tested: {PodWR}

% cd ..

Now, let us run all tests at once, with the parameters of machine saumur (4 physical cores with hyper-
threading):

% litmus -mach saumur rfi/@all > rfi/saumur.rfi.00

% litmus -mach saumur podwr/@all > podwr/saumur.podwr.00

% litmus -mach saumur safe/@all > safe/saumur.safe.00

If your machine has 2 cores only, try litmus -a 2 -limit true. . .
We now look for the tests that have validated their condition in the result files of litmus. A simple tool,

readRelax, does the job:

% readRelax rfi/saumur.rfi.00 podwr/saumur.podwr.00 safe/saumur.safe.00

.

.

.

** Relaxation summary **

{Rfi} With {Rfe, Fre, Wse, PodRW, PodRR} {Rfe, Fre, PodRR}\

{Fre, Wse, PodWW, PodRR} {Fre, PosWW, PodRR, MFencedWR}\

{Fre, PodWW, PodRR, MFencedWR} {Fre, PodRR} {Fre, PodRR, MFencedWR}

{PodWR} With {Fre}

The tool readRelax first lists the result of all tests (which is omitted above), and then dumps a summary of
the relaxations it found. The sets of the candidate relaxations that need to be safe for the tests to indeed
reveal a relaxed candidate relaxation are also given. Here, Rfi and PodWR are confirmed to be relaxed, while
no candidate relaxation in the safe set is found to be relaxed. Had it been the case, a line {} With {...}

would have occurred in the relaxation summary. The safe tests need to be run a lot of times, to increase our
confidence in the safe set.

6 Additional relaxations

We introduce some additional candidate relaxations that are specific to the Power architecture. We shall not
detail here our experiments on Power machines. See our experience report http://diy.inria.fr/phat/ for
more details.

6.1 Intra-processor dependencies

In a very relaxed architecture such as Power, intra-processor dependencies becomes significant. Roughly,
intra-processor dependencies fall into two categories:

Data dependencies occur when a memory access instruction reads a register whose contents depends upon
a previous (in program order) load. In diy we specify such a dependency as:

Dp(s|d)(R|W)
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where, as usual, s (resp. d) indicates that the source and target events are to the same (resp. different)
location(s); and R (resp. W) indicates that the target event is a read (resp. a write). As a matter of
fact, we do not need to specify the direction of the source event, since it always is a read.

Control dependencies occur when the execution of a memory access is conditioned by the contents of a
previous load. Their syntax is similar to the one of Dp relaxations, with a Ctrl tag:

Ctrl(s|d)(R|W)

In the produced code, diy expresses a data dependency by a false dependency (or dummy dependency) that
operates on the address of the target memory access. For instance:

% diyone DpdW Rfe DpdW Rfe

PPC a "DpdW Rfe DpdW Rfe"

{ 0:r2=x; 0:r5=y; 1:r2=y; 1:r5=x; }

P0 | P1 ;

lwz r1,0(r2) | lwz r1,0(r2) ;

xor r3,r1,r1 | xor r3,r1,r1 ;

li r4,1 | li r4,1 ;

stwx r4,r3,r5 | stwx r4,r3,r5 ;

exists (0:r1=1 /\ 1:r1=1)

On P0, the effective address of the indexed store stwx r4,r3,r5 depends on the contents of the index
register r3, which itself depends on the contents of r1. The dependency is a “false” one, since the contents
of r3 always is zero, regardless of the contents of r1.

A control dependency is implemented by the means of an useless compare and branch sequence, plus the
isync instruction when the target event is a load. For instance

% diyone CtrldR Fre SyncdWW Rfe

PPC a

"CtrldR Fre SyncdWW Rfe"

{ 0:r2=x; 0:r4=y; 1:r2=y; 1:r4=x; }

P0 | P1 ;

li r1,1 | lwz r1,0(r2) ;

stw r1,0(r2) | cmpw r1,r1 ;

sync | beq LC00 ;

li r3,1 | LC00: ;

stw r3,0(r4) | isync ;

| lwz r3,0(r4) ;

exists (1:r1=1 /\ 1:r3=0)

Of course, in both cases, we assume that dependencies are not “optimised out” by the assembler or the
hardware.

6.2 Composite relaxations and cumulativity

Users may specify a small sequence of single candidate relaxations as behaving as a single candidate relaxation
to diy. The syntax is:

[r1, r2, . . . ]

The main usage of the feature is to specify cumulativity candidate relaxations, that is, the sequence of Rfe
and of a fence candidate relaxation (A-cumulativity), the sequence of a fence candidate relaxation and of Rfe
(B-cumulativity), or both (AB-cumulativity).
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Cumulativity candidate relaxations are best expressed by the following syntactical shortcuts: let r be
a fence candidate relaxation, then ACr stands for [Rfe,r], BCr stands for [r,Rfe], while ABCr stands
for [Rfe,r,Rfe],

Hence, a simple way to generate iriw-like (see Sec. 4.3) litmus tests with lwsync is as follows:

% diy -name iriw-lwsync -nprocs 8 -size 8 -relax ACLwSyncdRR -safe Fre

Generator produced 3 tests

Relaxations tested: {ACLwSyncdRR}

where we have for instance:

% cat iriw-lwsync001.litmus

PPC iriw-lwsync001

"Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR"

Cycle=Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR Fre Rfe LwSyncdRR

Relax=ACLwSyncdRR

Safe=Fre

{

0:r2=z; 0:r4=x; 1:r2=x;

2:r2=x; 2:r4=y; 3:r2=y;

4:r2=y; 4:r4=z; 5:r2=z;

}

P0 | P1 | P2 | P3 | P4 | P5 ;

lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 | lwz r1,0(r2) | li r1,1 ;

lwsync | stw r1,0(r2) | lwsync | stw r1,0(r2) | lwsync | stw r1,0(r2) ;

lwz r3,0(r4) | | lwz r3,0(r4) | | lwz r3,0(r4) | ;

exists (0:r1=1 /\ 0:r3=0 /\ 2:r1=1 /\ 2:r3=0 /\ 4:r1=1 /\ 4:r3=0)

7 Identifying coherence orders with observers

We first produce the “four writes” test W4 for Power:

% diyone -name W4 -arch PPC PodWW Wse PodWW Wse

% cat W4.litmus

PPC W4

"PodWW Wse PodWW Wse"

{ 0:r2=x; 0:r4=y; 1:r2=y; 1:r4=x; }

P0 | P1 ;

li r1,2 | li r1,2 ;

stw r1,0(r2) | stw r1,0(r2) ;

li r3,1 | li r3,1 ;

stw r3,0(r4) | stw r3,0(r4) ;

exists (x=2 /\ y=2)

Test W4 is the Power version of X86 test ws of Sec. 4.3. In that section, we argued that the final condition
exists (x=2 /\ y=2) suffices to identify the coherence orders 0, 1, 2 for locations x and y. As a consequence,
a positive final condition reveals the occurrence of the specified cycle: Wse PodWW Wse PodWW.

7.1 Simple observers

Observers provide an alternative, perhaps more intuitive, means to identify coherence orders: an observer
simply is an additional thread that performs several loads from the same location in sequence. Here, loading
value 1 and then value 2 from location x identifies the coherence order 0, 1, 2. The command line switch
-obs force commands the production of observers (test W4Obs):
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% diyone -name W4Obs -obs force -obstype straight -arch PPC PodWW Wse PodWW Wse

% cat W4Obs.litmus

PPC W4Obs

"PodWW Wse PodWW Wse"

{ 0:r2=x; 1:r2=y; 2:r2=x; 2:r4=y; 3:r2=y; 3:r4=x; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | lwz r1,0(r2) | li r1,2 | li r1,2 ;

lwz r3,0(r2) | lwz r3,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

| | li r3,1 | li r3,1 ;

| | stw r3,0(r4) | stw r3,0(r4) ;

exists (0:r1=1 /\ 0:r3=2 /\ 1:r1=1 /\ 1:r3=2)

Thread P0 observes location x, while thread P1 observes location x. With respect to W4, final condition has
changed, the direct observation of the final contents of locations x and y being replaced by two successive
observations of the contents of x and y.

It should first be noticed that the reasoning above assumes that having the same thread to read 1 from
say x and then 2 implies that 1 takes place before 2 in the coherence order of x. This need not be the case
in general — although it holds for Power. Moreover, running W4 and W4Obs yields contrasted results. While
a positive conclusion is immediate for W4, we were not able to reach a similar conclusion for W4Obs. As
a matter of fact, W4Obs yielding Ok stems from the still-to-be-observed coincidence of several events: both

observers threads must run at the right pace to observe the change from 1 to 2, while the cycle must indeed
occur.

7.2 More observers

A simple observer consisting of loads performed in sequence is a straight observer. We define two additional
sorts of observers: fenced observers, where loads are separated by the strongest fence available, and loop

observers, which poll on location contents change. Those are selected by the homonymous tags given as
arguments to the command line switch -obstype. For instance, we get the test W4ObsFenced by:

% diyone -name W4ObsFenced -obs force -obstype fenced -arch PPC PodWW Wse PodWW Wse

% cat W4ObsFenced.litmus

PPC W4ObsFenced

"PodWW Wse PodWW Wse"

{ 0:r2=x; 1:r2=y; 2:r2=x; 2:r4=y; 3:r2=y; 3:r4=x; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | lwz r1,0(r2) | li r1,2 | li r1,2 ;

sync | sync | stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | lwz r3,0(r2) | li r3,1 | li r3,1 ;

| | stw r3,0(r4) | stw r3,0(r4) ;

exists (0:r1=1 /\ 0:r3=2 /\ 1:r1=1 /\ 1:r3=2)

Invoking diyone as “diyone -obs force -obstype loop ...” yields the additional test W4ObsLoop. The
html version of this document provides details.

As an indication of the performance of the various sorts of observers, the following table summarises a
litmus experiment performed on a 4-cores 2-ways SMT Power6 machine.

W4 W4Obs W4Fenced W4Loop

Positive 29k/400M 0/200M 585/200M 347/200M
States 4/4 42/49 49/49 16/16

The first row “Positive” shows the number of observed positive outcomes/total number of outcomes produced.
The second row “(Final) States” shows the number of different outcomes observed in practice/theoretical
value. For instance, in the case of W4, we observed the positive outcome x=2 /\ y=2 about 29 thousands
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times out of a total of 400 millions outcomes. Moreover, there are four possible outcomes: x=1 /\ y=1,
x=1 /\ y=2, x=2 /\ y=1 and x=2 /\ y=2, which we all observed at least once. As a conclusion, all tech-
niques achieve decent results, except straight observers.

7.3 Three stores or more

In test W4 the coherence orders sequence two writes. If there are three writes or more to the same location,
it is no longer possible to identify a coherence order by observing the final contents of the memory location
involved. In other words, observers are mandatory.

The argument to the -obs switch commands the production of observers. It can take three values:

accept Produce observers when absolutely needed. More precisely, given memory location x, no equality
on x appears in the final condition for zero or one write to x, one such appears for two writes, and
observers are produced for three writes or more.

avoid Never produce observers, i.e. fail when there are three writes to the same location.

force Produce observers for two writes or more.

With diyone, one easily build a three writes test as for instance the following W5:

% diyone -obs accept -obstype fenced -arch PPC -name W5 Wse Wse PodWW Wse PodWW

% cat W5.litmus

PPC W5

"Wse Wse PodWW Wse PodWW"

{ 0:r2=y; 1:r2=y; 1:r4=x; 2:r2=x; 2:r4=y; 3:r2=y; }

P0 | P1 | P2 | P3 ;

lwz r1,0(r2) | li r1,3 | li r1,2 | li r1,2 ;

sync | stw r1,0(r2) | stw r1,0(r2) | stw r1,0(r2) ;

lwz r3,0(r2) | li r3,1 | li r3,1 | ;

sync | stw r3,0(r4) | stw r3,0(r4) | ;

lwz r4,0(r2) | | | ;

exists (x=2 /\ 0:r1=1 /\ 0:r3=2 /\ 0:r4=3)

As apparent from the code above, we have a fenced observer thread on y (P0), while the final state of x is
observed directly (x=2). The command line switch -obs force would yield two observers, while -obs avoid

would lead to failure.

8 Command usage

The diy suite consists in three tools:

diyone generates one litmus test from the specification of a violation of the sequential consistency memory
model as a cycle—see Sec. 4.2.

diy generates several tests, aimed confirming that candidate relaxations are relaxed or safe—see Sec. 5.

readRelax Extract relevant information from the results of tests—see Sec. 5.2.

8.1 Usage of diyone

diyone takes a list of candidate relaxations as arguments and outputs a litmus test. Note that diyone may
fail to produce the test, with a message that briefly details the failure.
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% diyone Rfe Rfe PodRR

Test a [Rfe Rfe PodRR] failed:

Impossible direction PodRR Rfe

diyone accepts the following documented options.

-v Be verbose, repeat to increase verbosity.

-version Show version number and exit.

-obs <accept|avoid|force> Management of observers, default is avoid. See Sec. 7.3.

-obstype <fenced|loop|straight> Style of observers, default is fenced. See Sec. 7.2.

-optcond Optimise conditions by disregarding the values of loads that are neither the target of Rf, nor the
source of Fr. This is the default.

-nooptcond Do not optimise conditions.

-name <name> Set the name of the test to <name> and output it into file <name>.litmus. By default, the
test name is a and output goes to standard output.

-arch <X86|PPC> Set architecture. Default is PPC.

8.2 Usage of diy

The tool diy accepts the same options as diyone, option -name <name> being mandatory and setting the
base name of generated litmus tests: i.e. diy produces tests <name>000, <name>001, etc., in files with
extension .litmus. Moreover, diy produces an index file @all that lists file names <name>000.litmus,
<name>001.litmus etc.

diy also accepts the following, additional, documented options.

-conf <file> Read configuration file <file>. A configuration file consists in a list of options, one option
per line. Lines introduced by # are comments and are thus ignored.

-o <name.tar> Output litmus tests as an archive <name.tar>. The default is to output them in the current
directory.

-size <n> Set the maximal size of cycles. Default is 6.

-exact Produce cycles of size exactly <n>, in place of size up to <n>.

-nprocs <n> Reject tests with more than <n> threads. Default is 4.

-eprocs Produce tests with exactly <n> threads, where <n> is set above.

-ins <n> Reject tests as soon as the code of one thread consists of more than <n> instructions. Default is 4.

-c <bool> Avoid equivalent cycles. Default is true.

-relax <relax-list> Set relax list. Default is empty. The syntax of <relax-list> is a comma (or space)
separated list of candidate relaxations.

-mix <bool> Mix the elements of the relax list (see below), default false.

-maxelax <n> In mix mode, upper bound on the number of different candidate relaxations tested together.
Default is 100.

-safe <relax-list> Set safe list. Default is empty.
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-mode <critical|sc> Control generation of cycles, default sc. Critical mode offers predictive control on
cycle generation (see below), and is activated when diy is invoked by the automated front-end dont.

-cumul <bool> Permit implicit cumulativity, i.e. authorise building up the sequence Rfe followed by a
fence, or the reverse. Default is true.

The relax and safe lists command the generation of cycles as follows:

1. When the relax list is empty, cycles are built from the candidate relaxations of the safe list.

2. When the relax list is of size 1, cycles are built from its single element r and from the elements of the
safe list. Additionally, the cycle produced contains r at least once.

3. When the relax list is of size n, with n > 1, the behaviour of diy depends on the mix mode:

(a) By default (-mix false), diy generates n independent sets of cycles, each set being built with
one relaxation from the relax list and all the relaxations in the safe list. In other words, diy on a
relax list of size n behaves similarly to n runs of diy on each candidate relaxation in the list.

(b) Otherwise (-mix true), diy generates cycles that contains at least one element from the relax list,
including some cycles that contain different relaxations from the relax list. The cycles will contain
at most m different elements from the relax list, where m is specified with option “-maxrelax m”.

Generally speaking, diy generates “some” cycles and does not generate “all” cycles (up to a certain size
e.g.). In (default) sc mode, diy performs some optimisation, most of which we leave unspecified. As an
exception to this non-specification, diy is guaranteed not to generate redundant elementary communication
relaxation in the following sense: let us call Com the union of Ws, Rf and Fr (the e|i specification is irrelevant
here). Ws being transitive and by definition of Fr, one easily shows that the transitive closure Com+ of Com
is the union of Com plus [Ws,Rf] (Ws followed by Rf) plus [Fr,Rf]. As a consequence, maximal subsequences
of communication relaxations in diy cycles are limited to single relaxations (i.e. Ws, Rf and Fr) and to the
hereabove mentioned two sequences (i.e. [Ws,Rf] and [Fr,Rf]). For instance, [Ws,Ws] and [Fr,Ws] should
never appear in diy generated cycles. However, such subsequences can be generated on an individual basis
with diyone, see the example of W5 in Sec 7.3.

In critical mode (-mode critical), cycles are strictly specified as follows:

1. Communication candidate relaxations sequences are limited to Rf,Fr,Ws,[Ws,Rf] and [Fr,Rf], as in sc
mode.

2. No two internal3 candidate relaxations follow one another.

3. If the option -cumul false is specified, diy will not construct the sequence of Rfe followed by a fence
(or B-cumulativity) candidate relaxation or of a fence (or A-cumulativity) candidate relaxation followed
by Rfe.

4. None of the rules above applies to the internal sequences of composite candidate relaxations. For
instance, if [Rfi,PodRR] is given as a candidate relaxation, the sequence “Rfi,PodRR” appears in
cycles.

The cycles described above are the critical cycles of [4].

8.3 Usage of readRelax

readRelax is a simple tool to extract relevant information out of litmus run logs. For a given run of a given
litmus test, the relevant information is:

• Whether the test yielded Ok or not,

3That is, the source and target accesses are by the same processor.
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• An optional candidate relaxation, which is the one given as argument to diy option -relax at test
build time, or none.

• The safe list relevant to the given test, i.e. the safe candidate relaxations that appear in the tested
cycle.

See Sec. 5.2 for an example.
The tool readRelax takes file names as arguments. If no argument is present, it reads a list of file names

on standard input, one name per line.
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Part III

Automating the testing process

The authors of dont are Jade Alglave and Luc Maranget (INRIA Paris–Rocquencourt).

9 Preamble

Following Part II, we describe our tests via cycles, built from the candidate relaxations they involve. We
consider a candidate relaxation to be relaxed, or non-global, when it corresponds to the weaknesses that can
be observed on a system implementing A. We consider a candidate relaxation to be safe, or global, when it
is guaranteed, e.g. by the documentation, never to be relaxed.

In the following, we consider an architecture A to be a pair (RelaxA, SafeA), where RelaxA (resp. SafeA)
are the candidate relaxations relaxed (resp. safe) for A.

10 A tour of dont

10.1 Checking conformance

We want to check (prove, even) that a given machine M is conform to an architecture A. By conform, we
mean that the machine M does not exhibit more behaviours than the architecture A actually allows.

For example, let us consider an x86 machine with 2 processors. Suppose that we have been told that x86
machines are TSO [5], and that we want to check that. As the default values of dont options handle that
very situation, we type:

$ dont -mode conform

** Step 0 **

Phase 2 in A (6 tests)

...

Phase 2 in A (6 tests)

** Step 5 **

Safe set {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWR} is conform

The automated front-end dont, assumed the TSO safe set (the default for x86), called the diy tool (see
Part II) to generate all the tests that are forbidden by TSO — up to 2 processors; ran them (5 times) with
our companion litmus tool, (see Part I) against our x86 machine; and observed that the machine does not
exhibit any outcome forbidden by TSO. In effect, dont in conformance check mode automates the safe tests
of Sec. 5.2.

10.2 Checking non-conformance

Now, we wish to prove that an x86 machine is not sequentially consistent. To that end, we write the following
configuration file x86.sc:

#General behaviour

arch = X86

mode = conform

stabilise = 1

#Cycle control

safe = Rfe,Fre,Wse,Pod**,[Rfi,PodRR]

nprocs = 2

#External tool control
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litmus_opts = -a 2 -i 0

run_opts = -s 100000 -r 10,-s 5000 -r 200 -i 1

build = make -j 2 -s

Most of dont controls are set, sometimes to their default values:

• arch = X86 sets the targeted architecture, mode = conform sets conformance check mode, and stablise

= 1 commands performing the check round once (the default is five times, cf. supra).

• safe = Rfe,Fre,Wse,Pod**,[Rfi,PodRR] defines the set of safe relaxation candidates used to gener-
ate litmus tests (up to 2 processors, by nprocs = 2).

• The front-end dont calls litmus and runs the tests with the specified options. The setting litmus opt

= -a 2 -i 0 specifies that two processors are available and enables affinity control (see Sec. 3 for the
description of litmus options). Tests will be run twice per check round, once with options -s 100000 -r

10, and once with options -s 5000 -r 200 -i 1 (see Sec. 2.3 for the description of test executable
options). Finally, the setting build = make -j 2 -s specifies the command to use to compile the
C source files that litmus produces.

We run dont configured by x86.sc as follows:

$ dont x86.sc

** Step 0 **

Phase 2 in A (9 tests)

...

** Step 1 **

Safe set {[Rfi,PodRR], Rfe, Fre, Wse, PodWW, PodWR, PodRW, PodRR} is not conform

++ Invalidating tests ++

A006: ’Fre PodWR Fre PodWR’ {Fre, PodWR}

A007: ’Fre PodWW Wse PodWR’ {Fre, Wse, PodWW, PodWR}

A001: ’Rfi PodRR Fre PodWR Fre’ {[Rfi,PodRR], Fre, PodWR}

A002: ’Rfi PodRR Fre PodWW Wse’ {[Rfi,PodRR], Fre, Wse, PodWW}

A000: ’Rfi PodRR Fre Rfi PodRR Fre’ {[Rfi,PodRR], Fre}

++++++++

The conformance check failed and the tests that invalidate the hypothesis “x86 is sequentially consistent”
are listed. The check took place in directory A. Directory A contains the actual logs of litmus runs as files
A.00, A.01 etc., in addition to the sources of the litmus tests:

$cat A/A006.litmus

X86 A006

"Fre PodWR Fre PodWR"

Cycle=Fre PodWR Fre PodWR

Relax=

Safe=Fre PodWR

{ }

P0 | P1 ;

MOV [x],$1 | MOV [y],$1 ;

MOV EAX,[y] | MOV EAX,[x] ;

exists (0:EAX=0 /\ 1:EAX=0)

Notice that, since tests are described by their cycles, the source of tests can also be reconstructed with diyone:

% diyone -arch X86 Fre PodWR Fre PodWR

X86 a
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"Fre PodWR Fre PodWR"

{ }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

10.3 Automatically exploring the memory model exhibited by a machine

Now suppose that we have no idea of the memory model of our 2 processsors x86 machine. Another
mode of our dont tool automatically explores a given machine, and outputs an architecture (i .e. a pair
(RelaxA, SafeA)) to which the machine conforms. The following configuration file x86.explo instructs dont

to perform such an exploration.

#General behaviour

arch = X86

mode = explo

#Cycle control

testing = Rfe,Pod**,MFenced**,[Rfi,PodR*]

safe = Fre,Wse

nprocs = 2

#External tool control

litmus_opts = -a 2 -i 0

run_opts = -s 100000 -r 10,-s 5000 -r 200 -i 1

build = make -j 2 -s

With respect to conformance check, new or changed settings are the selection of exploration mode by mode

= explo, the definition of the initial safe set by safe = Fre,Wse, and and the definition of the candidate
relaxations to be tested (testing = Rfe,Pod**,MFenced**,[Rfi,PodR*]).

We lauch the exploration as:

$ dont x86.explo

The whole process only takes a few minutes, mostly due to the limited number of tests induced by the setting
nprocs = 2.

We now detail dont output (the html version4 of this document includes the complete log of the experi-
ence). We start by a first exploration round:

** Step 0 **

Testing: {[Rfi,PodRW], [Rfi,PodRR], Rfe, PodWW, PodWR, PodRW, PodRR, MFencedWW,

MFencedWR, MFencedRW, MFencedRR}

Relaxed: {}

Safe : {Fre, Wse}

Phase 1 in A (6 tests)

Actually tested: {[Rfi,PodRW], [Rfi,PodRR], PodWW, PodWR, MFencedWW, MFencedWR}

Added relax: {[Rfi,PodRR], PodWR}

Added safe: {[Rfi,PodRW], PodWW, MFencedWW, MFencedWR}

Phase 2 in B (6 tests)

The log above first indicates the current status of exploration as three sets: testing, relaxed and safe. Initially,
no candidate relaxation has yet been observed to be relaxed, while the testing and safe sets are as assumed.
Each exploration round is divided in two phases. The aim of Phase 1 (performed in directory A) is to classify

4http://diy.inria.fr/doc/auto.html
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some candidate relaxations as either relaxed or safe. It here succeeds for 6 candidate relaxations, whose
observed status is indicated. Phase 2 (performed in directory B) basically is a conformance check of the
current safe set. The conformance check succeeds and all safe candidate relaxations found at phase 1 make
it to the next round:

** Step 1 **

Testing: {Rfe, PodRW, PodRR, MFencedRW, MFencedRR}

Relaxed: {[Rfi,PodRR], PodWR}

Safe : {[Rfi,PodRW], Fre, Wse, PodWW, MFencedWW, MFencedWR}

Phase 1 in C (10 tests)

Actually tested: {Rfe, PodRW, PodRR, MFencedRW, MFencedRR}

Added safe: {Rfe, PodRW, PodRR, MFencedRW, MFencedRR}

Phase 2 in D (17 tests)

Phase 1 (performed in directory C) can now target new candidate relaxations, because of the increased safe
set. All of targeted candidate relaxations are observed to be safe, which is confirmed by phase 2. As a
consequence, there does not remain any candidate relaxation to be tested and the next round reduces to a
conformance check:

** Step 2 **

zzTesting: {}

Relaxed: {[Rfi,PodRR], PodWR}

Safe : {[Rfi,PodRW], Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}

Phase 1 in E (0 tests)

Phase 2 in D (17 tests)

The same check is performed for 4 additional rounds as governed by the default value of 5 for the setting
of stabilise. Round number 6 then shows the result of exploration, (i.e. the pair (RelaxA, SafeA)), prefixed
by the list of tests that justify observed relaxations:

** Step 6 **

...

++ Witness(es) for relaxed [Rfi,PodRR] ++

A001: ’Rfi PodRR Fre Rfi PodRR Fre’ {[Rfi,PodRR], Fre}

++++++++

++ Witness(es) for relaxed PodWR ++

A003: ’Fre PodWR Fre PodWR’ {Fre, PodWR}

++++++++

Observed relaxed: {Rfi, PodWR}

Observed safe: {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}

And we go again for 5 additional rounds of pure conformance check:

** Now checking safe set conformance **

** Step 7 **

Phase 2 in F (17 tests)

...

* Step 12 **

Observed relaxed: {Rfi, PodWR}

Observed safe: {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}

Once exploration is complete, all litmus tests and logs of litmus runs are still present in their directories
A, B, etc. For instance, the directory F contain the 10 logs of the final conformance check, as the files F.01,
. . . , F.09:
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$ ls F/F.??

F/F.00 F/F.01 F/F.02 F/F.03 F/F.04 F/F.05 F/F.06 F/F.07 F/F.08 F/F.09

The tool dont offers a convenient replay feature:

$ dont -restart

** Step 0 *

...

* Step 12 **

Observed relaxed: {Rfi, PodWR}

Observed safe: {Rfe, Fre, Wse, PodWW, PodRW, PodRR, MFencedWW, MFencedWR, MFencedRW, MFencedRR}

The command above takes a few seconds of time, since experiments are not run again. Instead, the logs of
litmus runs are read and their interpretatiosn is re-performed. Notice that the restart feature also permits
to pursue interrupted experiments.

11 Usage of dont

In effect, the tool dont automates the complete testing procedure described in the documentation of diy

proper (Sec. 5). It is to be noticed that dont requires a fully functional installation of the diy tool suite. In
particular, the commands diy and litmus must be installed and runnable as “diy” and “litmus” (.i.e installed
in path).

11.1 Command-line options

The automated front-end dont is configured mostly by the means of a configuration file, which dont takes as
a command-line argument. Nevertheless, dont accepts the following, limited, set of options:

-v Be verbose, repeat to increase verbosity.

-version Show version number and exit.

-arch <X86|PPC> Set architecture. Default is X86.

-mode <conform|explo> Set main mode, either conformance check or exploration. Default is explo.

-nprocs <n> Generate tests up to ¡n¿ processors (defaults: X86=2, PPC=4)

-restart Restart the experiment in hand in current directory.

Except for -restart command lines options are not intended for normal use. In particular, command-line
options do not override values defined in configuration files.

Namely, there are many parameters to set and appropriate values for them will depend on the tested ma-
chine. In particular, litmus parameters need to be chosen carefully, by the means of preliminary experiments.
For instructions on configuring litmus, refer to Sec. 2 of litmus documentation.

11.2 Configuration files

The general syntax of configurations files is a sequence of lines key = value. Comment lines are introduced
by #. The tool dont recognises the following keys:
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General behaviour

mode = <conform|explo> Main operating mode. Default is explo

arch = <X86|PPC> Target architecture. Default is X86.

run = <local|ssh [user@]hostname> Give access to the tested machine, which can be either the machine
where dont runs, or a remote machine which will be accessed by scp and ssh. Default is local.

work dir = dir Directory for temporary files, default is /var/tmp.

stabilise = <n > In conformance check mode, dont performs n rounds of conformance testing. In explo-
ration mode, dont ends the exploration after n rounds without state change. Default is 5.

interactive = <true|false> In exploration mode and after n rounds without state change, dont will
either assume that the whole current testing set is safe (false), or ask the user (true) to decide for
some of the elements of this set to be safe. Default is true, i.e. ask user.

Generation of cycles

nprocs = <n > Generate cycles up to n processors. Default is 2 for x86 and 4 for Power.

diy sz = <m > Upper limit on the size of cycles of candidate relaxations. Default is 2 × n, where n is the
number of processors. With decent values of the initial candidate relaxations sets (see below), this
default commands the generation of all (critical, see Sec. 8.2) cycles that involve up to n processors.

safe = <relax-list> Define the safe set S. In exploration mode, S is the initial value of the safe set (de-
fault Fre, Wse). In conformance mode, S is the safe set checked. (default is Rfe, Fre, Wse, PodR*,

PodWW, MFencedWR for x86, and Fre, Wse, DpdW, DpdR, CtrldW, Ctrld, Syncd**, ACSyncdR*,

BCSyncd*W, ABCSyndRW, LwSyncdWW, LwSyncdR*, ACLwSyncdRW, BCLwSyncdRW, ABCCLwSyncdRW for
Power).

testing = <relax-list> Define the tested set of candidate relaxations. The tested set is relevant only in
exploration mode. Default values are Rfe,Pod**,MFenced**,[Rfi,MFencedR*],[Rfi,PodR*] for x86
and Pod**, Dpd*, Ctrld*, LwSyncd**, Syncd**, ACLwSyncdR*, ACSyncdR*, ABCLwSyncdRW, ABCSyncdRW,

BCLwSyncd*W, BCSyncd*W, Rfe,[Rfi,Dpd*],[Rfi,Ctrld*] for Power.

The syntax for relax-list above is a comma (or space) separated list of candidate relaxations. Candidate
relaxations are introduced by the documentation of diy (see Part II)

Control of external tools

litmus opts = <opts> Define options used by dont when it calls litmus. Default is the empty string, i.e.

use litmus defaults.

run opts = <opts1,...,optsn> Define options used for running litmus tests. Any set of litmus tests gen-
erated and compiled by dont, will be run n times, with specified options. More concretely, dont will run
the litmus tests with commands sh run.sh opts1, . . . , sh run.sh optsn. The default is the empty
string, i.e. run tests once with no option.

build = <command> Defines the command issued by dont to compile the C source files produced by lit-

mus. The default is sh comp.sh, i.e. runs the compilation script produced by litmus. An intersting
alternative is gmake -s -j n for concurrent compilation, with up to n concurrent tasks.
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